Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Классификация точек и множеств в метрических пространствах






    Пусть (Х, r) – метрическое пространство.

    Определение 2.1. Открытым шаром с центром в точке х о и радиусом e называется множества всех точек х, которые удовлетворяют условию r (x, х о) < e. Это множества называется также e -окрестностью точки хо и обозначается U (x o, e) или Ue (xo).

    Пример 2.1. Открытый шар в различных пространствах:

    - в пространстве R 1: (x o- e; x o + e) – интервал;

     

    - в пространстве R 2: открытый круг;

     

    - в пространстве R 3: открытый шар.

     

    Определение 2.2.Замкнутым шаром с центром в точке х о и радиусом e называется множества всех точек х, которые удовлетворяют условию r (x, хо) £ e.

    Мы будем говорить шар и будем иметь в виду определение 2.2.

    Сфера – множества точек, которые удовлетворяют условию r (x, х о) = e.

    Пример 2.2. Шар в различных пространствах:

     

    - в пространстве R 1: [ x o- e; x o + e ] – отрезок;

     

    - в пространстве R 2: замкнутый круг или просто круг;

     

    - в пространстве R 3: замкнутый шар или шар.

     

    Определение 2.3. Множества ЕÌ Х называется ограниченным в метрическом пространстве(Х, r), если существует шар конечного радиуса, который содержит это множества.

    Замечание 2.1. Множества в различных метрических пространствах могут быть ограниченными и неограниченными.

    Пример 2.3. Интервал (3; 5) Ì R –ограниченное множество в пространстве R; интервал (3; 5) пространстве Х = ((3; 5), r (x, y) = ½ х-y ½) не является ограниченным в пространстве Х.

    Определение 2.4. Пусть ЕÌ Х. Точка х 0 называется граничной точкой множества Е, если в любой окрестности этой точки содержатся точки, которые принадлежат множеству Е и не принадлежат ему.

    Множества граничных точек – граница множества Е и обозначается ¶Е.

    Пример 2.4. Множества Е 1 = (0; 1] Ì R Þ ¶Е = { 0; 1};

    множества Е2 = (0; 1] Ì Х = ((0; 1], r (x, y) = ½ х- в ½) не имеет границы.

    Замечание 2.2. Граничные точки множества могут как принадлежать множеству, так и не принадлежать ему.

    Определение 2.5. Точка х 0 называется внутренней точкой множества Е, если существует окрестность точки х 0, которая целиком содержится в множестве Е. Множество всех внутренних точек называется внутренностью множества Е и обозначается .

    Пример 2.5. Е 1 = (2; 3), Е 2 = (2; 3], Е 3 = [2; 3] Þ = = = (2; 3)

    Пример 2.6. в метрическом пространстве R; = Е в пространстве: Х = ((2, 3]È È {4, 5}, r (x, y) = ½ х-в ½) – подпространство м.пр. R.

    Определение 2.6. Если каждая точка множества Е внутренняя, то оно называется открытым, а его внутренность совпадает с самим множеством: = Е.

    В примере 2.5 множество Е 1 является открытым, а множества Е 2 и Е 3 не являются открытыми.

    В примере 2.6 в первом случае множество Е не является открытым, во втором - является открытым.

    Пример 2.7. Интервал (a, b)является открытым множеством в метрическом пространстве R.

    Определение 2.7. Точка х о называется предельной точкой множества Е, если в любой его окрестности содержится бесконечно много точек множества Е.

    Другими словами точка х о называется предельной точкой множества Е, если в любой его окрестности находится хотя бы одна точка множества Е, которая не совпадает с х о.

    Множество всех предельных точек множества Е называется производным множеством множества Е и обозначается Е¢.

    Замечание 2.3. Предельные точки могут как принадлежать множеству Е, так и не принадлежать ему.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.