Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Определение и примеры метрических пространств






    Предисловие

    Данное учебно-методическое пособие предназначено студентам-заочникам математического факультета для организации самостоятельной работы и подготовки к зачету и экзамену. В нем содержится теоретический материал раздзела математического анализа “Метрические пространства” и шесть вариантов контрольных работ по тематике разделов математического анализа “Метрические пространства” и “Дифференциальное и интегральное исчисление функции многих переменных”, образец решения нулевого варианта, вопросы к экзамену, список рекомендуемой литературы.

    Содержание пособия соответствует программе курса математического анализа.

    В пособии использованы распространенные символы математической логики и логические операторы Þ, Û, Î, Ì, ", $.

    Для удобства текст, которым начинается и завершается доказательство теорем, показаны значками 3и4соответственно.

     

     

    Определение и примеры метрических пространств

    Известно, что расстояние между двумя точками М 1(х 1, y 1) и М 2(х 2, y 2)плоскости вычисляется по формуле

    и имеет свойства:

    1) r (M 1, M 2) ³ 0; r (M 1, M 2) = 0 Û M 1 = M 2;

    2) r (M 1, M 2) = r (M 2, M 1);

    3) r (M 1, M 2) £ r (M 1, M 3) + r (M 2, M 3) (неравенство треугольника).

    Напомним, что если имеются два непустых множества X и Y, то их декартовым произведением X´ Y называется множества всех упорядоченных пар . В частности X´ Х обозначается X 2.

    Обобщим понятие расстояния на любое множества с помощью понятия декартового произведения двух множеств: .

    Пусть Х – некоторое непустое множества любой природы. Рассмотрим декартовое произведение .

    Определение 1.1. Метрикой (расстоянием) на множестве Х называется отображение r декартова произведения Х ´ Х в множества действительных чисел, удовлетворяющее следующим условиям для " x, y, zÎ X:

    1) r (x, y) ³ 0; r (x, y) =0 Û x = y;

    2) r (x, y) = r (y, x);

    3) r (x, y) £ r (x, z) + r (y, z) (неравенство треугольника).

    Значение функции r в точке (x, y), т.е. число r (x, y), называется расстоянием между точками x и y. Условия 1-3 называются аксиомами метрики.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.