![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Геометрична ілюстрація
Рис. 5.27
● Маємо За наслідком із теореми функція
● Функція і Методом інтервалів знаходимо, що
38. Точки перегину Нехай функція f (x) диференційовна в інтервалі (а; b) за винятком, можливо, точки с Î (а; b), в якій вона неперервна і або не диференційовна, або має нескінченну похідну. Означення. Точка с називається точкою перегину кривої Рис. 5.28 При цьому точку графіка (с; f (c)) також називають точкою перегину (рис. 5.28). Геометрична інтерпретація. Точка с є точкою перегину кривої, якщо при переході через точку с крива у = f (x) має перегин, переходячи від опуклої до вгнутої, або навпаки. У самій же точці с функція f (x) або диференційовна, тобто крива у = f (x) має дотичну, не паралельну осі Оу, або неперервна (має дотичну, паралельну осі Оу). Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
· Маємо
Для х < 0 похідна у ¢ (х) є зростаючою, а для х > 0 — спадною. Звідси для х < 0 крива Рис. 5.29 39. Необхідна і достатня умови Теорема 1 (необхідна умова). Нехай функція f (x) двічі диференційовна в околі точки с і функція f² (х) неперервна в точці с. Якщо точка с є точкою перегину кривої у = f (x) тоді f² (с) = 0. Із означення точки перегину кривої у = f (x) та умов опуклих диференційовних функцій випливають такі достатні умови наявності точок перегину. Теорема 2. Якщо функція f (x) диференційовна в деякому околі точки с і для х < с цього околу f¢ (х) зростає, а для х > с спадає або, навпаки, для х < с похідна f¢ (х) спадає, а для х > с зростає, то х = с буде точкою перегину у = f (x). Теорема 3. Якщо функціяf(x)двічі диференційовна в деякому околі точки с іf² (х) < 0длях < сцього околу, а f² (х) > 0длях > сабо, навпаки, f² (х) > 0для х < с, а f² (х) < 0длях > с, то точка сбуде точкою перегину кривої.
· Знайдемо першу та другу похідну функції:
Отже, точки
Рис. 5.30.
40. Ознака сталості Теорема 1. Нехай функціяf(x)неперервна на проміжку [a; b]і диференційовна в кожній його внутрішній точці. Для того щоб функціяf(x)була сталою на проміжку[a; b], необхідно і достатньо, аби для всіх. Означення. Нехай функція f (x) визначена на проміжку (a; b) і х 0Î (a; b). Кажуть, що f (x) зростає в точці x 0, якщо існує окіл точки x 0, в якому f (x) < f (x 0) для х < x 0, а для х > x 0 f (x) > f (x 0). Аналогічно за означенням f (x) спадає в точці х 0Î (a; b), якщо існує її окіл, в якому f (x) > f (x 0) для х < x 0, а f (x) < f (x 0) для х > x 0. Теорема 2 (достатня ознака зростання і спадання функції в точці). Якщо функція f(x) диференційовна в точці х0Î (a; b) і f¢ (x0) > 0 (f¢ (x0) < 0), то f(x) зростає (спадає) в точці х0. Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
|