Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основні етапи біосинтезу білка на рибосомах






Транспортні РНК та активація амінокислот. Для кожної з 20 L-амінокислот існує щонайменше один специфічний для неї тип тРНК. Разом з тим, різні молекули тРНК відзначаються схожістю у вторинній та третинній структурі, що пояснюється загальним характером біохімічної функції. Важливою структурною особливістю тРНК є наявність у складі антикодонової петлі специфічного триплету нуклеотидів — антикодону, який є комплементарним кодону мРНК і забезпечує сполучення між тРНК та мРНК (кодон-антикодонову взаємодію) під час утворення ініціюючого комплексу.

Саме ці дві біохімічні властивості тРНК — здатність до взаємодії з певною амінокислотою, по-перше, і здатність до взаємодії із специфічним кодоном мРНК, по-друге, є молекулярною основою адапторної функції тРНК, тобто можливості сполучати два інформаційні потоки — “нуклеотидний” та “амінокислотний” в процесі фенотипічної експресії генетичної інформації. Взаємодія між тРНК та відповідною їй амінокислотою вимагає взаємного розпізнавання (рекогніції) цих молекул, що здійснюється лише за умов наявності спеціальних білків, які мають специфічні сайти для рекогніції як тРНК, так і L-амінокислоти. Цей процес розпізнавання та наступного приєднання двох біомолекул різних класів відбувається в два етапи і каталізується аміноацил- тРНК-синтетазами.

Схема взаємодії тРНК з амінокислотами

1. Активація амінокислоти за участю АТФ з утворенням аміноациладенілату:

2. Взаємодія аміноациладенілату з 3'-ОН-групою кінцевого аденозильного залишку на акцепторній гілці тРНК; утворення в результаті реакції аміноацил-тРНК:

Молекулярні механізми рибосомальної трансляції у прокаріотів та еукаріотів мають подібні риси і поділяються, як і при синтезі інших біополімерів, на етапи ініціації, елонгації та термінації.

Процес трансляції в клітинах еукаріотів

1. Ініціація трансляції.

Передумовою для початку функціонування рибосомальної білок синтезуючої системи є утворення ініціюючого комплексу, до складу якого входять:

– субодиниці 40s та 60s, сполучені між собою у 80s-рибосому; цілісна рибосома має дві структурні ділянки для зв’язування в процесі трансляції молекул тРНК, навантажених аміноацильними залишками: аміноацильну (А-) ділянку (А-сайт) та пептидильну (П-) ділянку (П-сайт), перша з яких в ході трансляції є сполученою з аміноацил-тРНК, а друга — з пептидил-тРНК;

– мРНК, що має обов’язково 7-метилгуанозиновий “кеп” на 5'-кінці; мРНК зв’язується з рибосомою таким чином, що напроти її п-ділянки розміщується ініціюючий кодон — AUG, який відповідає, за таблицею генетичного коду, аміно- кислоті метіоніну — ініціюючій амінокислоті (та взаємодіє з антикодоном мет-тРНКi);

– мет-тРНКi — особливий тип тРНК, що акцептує та поставляє в рибосому (спочатку — на П-сайт) першу, ініціюючу, амінокислоту — метіонін (включення метіоніну в середину пептидного ланцюга вимагає присутності іншої тРНК — спеціальної тРНКмет); зв’язування мет-тРНКi з 40s-субодиницею рибосом вимагає участі фактора ініціації eIF-2.

Таким чином, метіонін стає N-кінцевою амінокислотою для більшості еукаріотичних білків, його відщеплення з N-кінця можливе на стадії пост трансляційної модифікації пептиду. У прокаріотів першою, ініціюючою, амінокислотою є модифікований метіонін — формілметіонін, що надходить у рибосому у вигляді формілметіоніл-тРНК;

– білкові фактори ініціації (eIF-1, eIF-2, eIF-3 тощо — всього на даний час відомо до десяти факторів ініціації); зокрема, утворення цілісної 80s-рибосоми з субодиниць та її стабілізація вимагають присутності факторів ініціації eIF-3, eIF-4С та eIF-6;

– коферменти ГТФ та АТФ, що забезпечують енергією різні етапи ініціації.

2. Елонгація поліпептидного ланцюга.

Суто елонгація полягає в утворенні пептидних зв’язків між амінокислотними залишками, що зв’язані через відповідні тРНК з А- та П-ділянками транслюючої рибосоми. Передумовою початку елонгації є зв’язування з А-сайтом рибосоми (який на даному етапі є вільним) 2-ї (в загальному випадку — (n + 1)-ї, рахуючи з N-кінця пептиду, що синтезується) амінокислоти, сполученої з тРНК (рис. 21.5а). Ця (n + 1)-ша амінокислота відповідає (за генетичним кодом) кодону мРНК, який послідовно u1081 йде за ініціюючим (тобто AUG) кодоном.

Пептидилтрансферазна реакція

Утворення пептидного зв’язку між 1-ю (ініціюючою — метіоніном) та 2-ю амінокислотою, що зв’язані через свої тРНК з П- та А-сайтами рибосоми, відповідно) каталізується ферментом пептидилтрансферазою. Пептидилтрансферазна активність пов’язана з 50s-субодиницею прокаріотів та 60s-cубодиницею еукаріотів. Ця ж пептидилтрансферазна реакція реалізує і подальші етапи елонгації, коли з П- та А-сайтами рибосоми сполучені, відповідно, пептидил-тРНК (містить “n” амінокислотних залишків) та певна наступна (“n + 1”) амінокислота.

У ході пептидилтрансферазної реакції відбувається перенос пептидного фрагменту (що зв’язаний через відповідну тРНК з П-сайтом) на амінокислоту (що зв’язана через тРНК з А-сайтом) таким чином, що в результаті реакції новий пептид, який утворився, стає зв’язаним з А-сайтом рибосоми. тРНК, що була первинно сполучена з П-сайтом, вивільняється (рис. 21.5б).

Реакція транслокації

Після утворення пептидного зв’язку відбувається переміщення подовженого пептиду, сполученого з тРНК (пептидил-тРНК), з А-сайту в П-сайт — процес транслокації. Водночас відбувається переміщення рибосоми впродовж ланцюга мРНК вправо. У результаті цього навпроти А-сайта рибосоми розміщується новий (n + 2)-й кодон мРНК, який відповідає наступній — (n + 2)-й амінокислоті, що у вигляді тРНК-комплексу може займати відповідне місце на рибосомі (рис. 21.5в). У транслокації бере участь білковий фактор елонгації eEF-2.

Енергетичні потреби транс локації забезпечуються ГТФ-азною реакцією розщеплення ГТФ до ГДФ.

3. Термінація трансляції.

Термінація трансляції відбувається, коли транслююча рибосома у своєму переміщенні впродовж ланцюга мРНК досягає одного з термінуючих кодонів — UAA, UAG або UGA. Поява в А-сайті термінуючого кодону розпізнається білковими рилізинг-факторами, які спричиняють гідроліз зв’язку між пептидом та молекулою тРНК, що займає П-сайт рибосоми. У результаті цього процесу відбувається вивільнення пептиду, що синтезувався, та дисоціація 80s-рибосоми на 40s- та 60s-субодиниці.

Посттрансляційна модифікація пептидних ланцюгів

Поліпептидний ланцюг, що є продуктом рибосомальної трансляції, набуває своїх біологічних властивостей після утворення притаманної йому унікальної просторової конформації білкової молекули, чому в багатьох випадках передує його посттрансляційна модифікація (процесинг).

Реакції посттрансляційної модифікації пептидів:

а) модифікація N-та С-кінців — видалення N-кінцевих формілметіоніну (у прокаріотів) та метіоніну (у еукаріотів); ацетилювання N- та С-кінців;

б) модифікація гідроксильних, амінних та карбоксильних груп у бічних радикалах пептидів шляхом їх фосфорилювання, карбоксилювання, метилювання, ацетилювання тощо;

в) приєднання до пептидів простетичних груп — вуглеводів (глікозилювання), гему, коферментів (флавінових нуклеотидів, біотину, порфіринів тощо);

г) хімічна модифікація ковалентної основи амінокислотних залишків; прикладом може бути перетворення у складі фактора ініціації еукаріотів eEF-2 залишку гістидину в залишок незвичайної амінокислоти дифталаміду.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.