Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Схема 4
. (4.16)
. (4.17)
. (4.18)
Рассмотрим на примере два базовых алгоритма умножения в компьютерных системах двоичных беззнаковых чисел: Алгоритм №1. Алгоритм умножения младшими разрядами вперед, со сдвигом суммы ЧП вправо. 1. Исходное значение суммы (ЧП) принимается равным (0), счетчику тактов - (Сч.Т) присваивается значение, равное числу разрядов множителя. 2. Анализируется младшая разрядная цифра множителя. Если она равна (1), то к сумме (ЧП) прибавляется множимое, совмещенное по старшим разрядам; если (0) - прибавление не производится. 3. Производится сдвиг множителя и суммы ЧП вправо на (1) разряд. Содержимое (Сч.Т) уменьшается на (1). 4. Анализируется содержимое (Сч.Т). Если оно не равно (0), то переход к (п.2), иначе - (п.5). 5. Умножение закончено, младшая часть произведения находится на месте множителя, а старшая - на месте суммы (ЧП). Например: необходимо перемножить два беззнаковых числа (7∙ 3=21). Для удобства возьмем длину разрядной сетки равную четырем битам, а именно: Х = 7 - множимое, Y = 3 - множитель, Z = 21 - произведение. Если (X) и (Y) равняется четырем битам, то как было отмечено выше (Z) должно быть восьмиразрядным значением, т.е длина разрядной сетки произведения в два раза больше множимого и множителя. Алгоритм умножения приведен в табл. 4.1.
Таблица 4.1 - Алгоритм умножения со сдвигом вправо двоичных беззнаковых чисел
Алгоритм №2. Алгоритм умножения старшими разрядами вперед, со сдвигом суммы ЧП влево. 1. Исходное значение суммы (ЧП) принимается равным (0), (Сч.Т) присваивается значение, равное числу разрядов множителя. 2. Производится сдвиг суммы (ЧП) влево на (1) разряд. 3.Анализируется старшая разрядная цифра множителя. Если она равна (1), то к сумме (ЧП) прибавляется множимое, совмещенное по младшим разрядам; если (0) - прибавление не производится. 4.Производится сдвиг множителя влево на (1) разряд. Содержимое (Сч.Т) уменьшается на (1). 5.Анализируется содержимое (Сч.Т). Если оно не равно (0), то переход к (п.2), иначе - (п.6). 6.Умножение закончено, произведения находится на месте суммы (ЧП), которая имеет удвоенную разрядность. Например: необходимо перемножить два беззнаковых числа (7∙ 3=21). Для удобства возьмем длину разрядной сетки равную четырем битам, а именно: Х = 7 - множимое, Y = 3 - множитель, Z = 21 - произведение. Если (X) и (Y) равняется четырем битам, то как было отмечено выше (Z) должно быть восьмиразрядным значением, т.е длина разрядной сетки произведения в два раза больше множимого и множителя. Алгоритм умножения приведен в табл. 4.1. Таблица 4.2 - Алгоритм умножения со сдвигом влево двоичных беззнаковых чисел
Лекция № 10 (90-минут)
|