Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Классификация по строению углеродной цепиСтр 1 из 7Следующая ⇒
КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
Каждый период развития органической химии отмечен попытками ученых каким-то образом привести разнообразие химических соединений в единую систему. Важнейшими признаками, которые положены в основу современной классификации органических соединений, являются строение углеродной цепи и природа функциональных групп. Классификация по строению углеродной цепи В зависимости от расположения углеродных атомов в молекуле органические соединения делят на несколько больших групп. Различают два типа органических соединений: ациклические и циклические. Ациклические или алифатические (отдревнегреч. алифар– жир) – вешества с открытой (незамкнутой) цепью, другое их название – соединения жирного ряда. По строению углеводородной цепи среди ациклических соединений различают; насыщенные (предельные) вешества, содержащие только простые углерод-углеродные связи и ненасыщенные (непредельные) алифатические – структуры с кратными (двойными, тройными) углерод-углеродными связями. К циклическим относятся соединения, содержащие в своей структуре замкнутые цепи атомов – циклы (от греч. циклос – круг). Природа атомов, входящих в цикл, лежит в основе деления всех циклических соединений на две большие группы: карбоци клические и гетеро циклические. В молекулах карбоциклических соединений цикл состоит только из атомов углерода. Гетероциклические соединения имеют в своей структуре циклы, содержащие наряду с атомами углерода атомы других элементов, чаще всего О, S, N. Карбоциклические соединения в свою очередь делятся на алициклические и ароматические, Алициклические структуры подобно алифатическим соединениям по степени насыщенности подразделяются на насыщенные и ненасыщенные: Среди гетероциклических соединений различают насыщенные, ненасыщенные и ароматические структуры: Соединения, молекулы которых состоят только из атомов углерода и водорода, называются углеводородами. Замещение одного или нескольких атомов водорода на функциональные группы ведет к образованию других классов органических соединений.
Классификация по природе функциональной группы Функциональная группа – структурный фрагмент молекулы, характеризующий свойства соединений данного класса. Например, свойства карбоновых кислот характеризуются наличием карбоксильной группы -СООН; в спиртах функциональная группа – спиртовый гидроксил –ОН; к аминам относятся соединения, содержащие группу -NH2 и т. д. По количеству и однородности функциональных групп органические соединения делят на моно-, поли- и гетерофункциональные. Вещества с одной функциональной группой называют монофункциональными, с несколькими одинаковыми функциональными группами – полифункциональными. Соединения, содержащие несколько различных функциональных групп, – гетерофункциональные. Соединения одного класса объединены в гомологические ряды. Гомологический ряд – это ряд органических соединений с одинаковыми функциональными группами и однотипным строением, каждый представитель гомологического ряда отличается от предыдущего на постоянную единицу (–СН2–), которую называют гомологической раз ностью. Члены гомологического ряда называются гомологами. НОМЕНКЛАТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИИ
Химическая номенклатура – совокупность названий индивидуальных химических веществ, их групп и классов, а также правила составления их названий. Соблюдать соответствия между существующей классификацией веществ и их наименованиями позволяют номенклатурные системы. Номенклатура органических соединений складывалась на протяжении всего периода возникновения и становления органической химии как науки. Для названий органических соединений применяют несколько номенклатурных систем: тривиальную, рациональную, международную (ИЮПАК),
Тривиальная номенклатура На первых этапах развития органической химии соединения назывались случайно. Это было связано с их нахождением в природе; щавелевая кислота, яблочная кислота и другие, или с источником их получения: древесный спирт, муравьиная кислота и др. Многие тривиальные названия прочно укоренились и до сих пор широко применяются.
Рациональная номенклатура В основе рациональной номенклатуры используется принцип деления органических соединений на гомологические ряды. Вещества рассматриваются как производные простейшего представителя данного ряда: для алканов -- метана, алкенов – этилена, алкинов – ацетилена и т. д., например: В настоящее время применение рациональной номенклатуры ограничено. Основные ее принципы нашли свое отображение в радикало-функциональной номенклатуре.
Международная номенклатура (ИЮПАК) Первая попытка создать номенклатурную систему, которая позволяла бы дать однозначное название любому органическому соединению, была предпринята химиками в 1892 году на международном конгрессе в Женеве (женевская номенклатура). Правила современной номенклатуры были разработаны на XIX конгрессе Международной: союза теоретической и прикладной химии в 1957 году. Эти правила известны под названием номенклатуры ИЮПАК. Номенклатурные правила ИЮПАК предусматривают несколько способов образования названий органических соединений. Наиболее широко применяются заместительная и радикало-функииональная номенклатуры.
Заместительная номенклатура Прежде чем перейти к рассмотрению заместительной номенклатуры, дадим определение основным понятиям. Родоначальная структура – структурный фрагмент молекулы (молекулярный остов), лежащий в основе названия соединения: главная углеродная цепь атомов для ациклических соединений, для карбо- и гетероциклических – цикл: Родоначальное название может быть систематическим, тривиальным или полусистематическим. В органической химии для sp3-гибрилизованного углерода существует такое понятие, как первичный, вторичный, третичный. Атом углерода, связанный σ -связью только с одним атомом углерода, называется первичным, с двумя – вторичным, стремя – третичным. Радикал – остаток углеводорода, образующийся в результате удаления одного или нескольких атомов водорода. Свободную валентность в радикалах обозначают черточкой. По количеству свободных валентностей различают одно-, двух-, трехвалентные радикалы: В зависимости оттого, у какого атома углерода находится свободная валентность, различают первичные, вторичные и третичные радикалы: Заместителем называют любой атом или группу атомов, включая радикал и функциональную группу, которые не входят в родоначальную структуру. Положение заместителей в молекуле указывают с помощью цифр или букв, которые называют локантами. Для обозначения нескольких одинаковых заместителей или кратных связей в данной молекуле применяют множительные (умножающие) приставки: ди- (два), три- (три), тетра- (четыре), пента- (пять) и т д. Согласно заместительной номенклатуре органические соединения рассматривают как производные углеводородов, в молекулах которых один или несколько атомов водорода замешены на другие атомы или атомные группы. Составление названий проводят в определенном порядке: 1. Среди всех функциональных групп, имеющихся в соединении, выбирают старшую. Следующие группы перечисляют в порядке уменьшения их старшинства: В названии органического вещества лишь старшая функциональная группа обозначается в суффиксе, все остальные – в префиксе, но некоторые функциональные группы всегда находят свое отражение в префиксе: Их не рассматривают по старшинству. 2. Устанавливают родоначальную структуру. Если соединение содержит кратные связи, то они должны войти в родоначальную структуру, 3. Проводят нумерацию атомов родоначальной структуры таким образом, чтобы старшая функциональная группа получила по возможности меньший номер, 4. Составляют название соединения в целом: первым указывают в алфавитном порядке функциональные группы (кроме старшей) и углеводородные радикалы в префиксе, затем – название родоначальной структуры в корне и в конце названия – старшую функциональную группу в суффиксе. Степень насыщенности обозначается специальными суффиксами: -ан – для насыщенных, -ен – для двойной, -ин – для тройной связи. Локанты, буквенные или цифровые, и множительные приставки располагают перед названием заместителей или кратных связей. Пример составления названий:
Радикало-функцыональнан номенклатура В основе радикало-функииональной номенклатуры лежит название класса (спирт, кетон и др), перед которым перечисляют названия радикалов и функциональных групп (кроме старшей), например: Родоначальную структуру чаще обозначают с помощью тривиального названия, а положение радикалов – с помощью буквенных локантов; α, β, γ, δ (греческий алфавит). Буквой α обозначают ближайший к старшей функциональной группе атом углерода. В дальнейшем при изучении различных классов органических соединений мы расширим приведенные краткие пояснения на многочисленных примерах. 2. ХИМИЧЕСКАЯ СВЯЗЬ. ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ Остановимся на одном из важнейших вопросов химии, как осуществляется связь атомов в молекулах? Используя знания, полученные в курсе неорганической химии, рассмотрим вопросы природы химической связи между атомами или типы химических связей. Современная теория химической связи базируется на квантово-механических представлениях о строении молекулы. предложили в 1916 г. немецкий ученый В. Косселъ и американский ученый Дж. Н.Льюис, Авторы электронной теории выдвинули идею о том, что химическая связь – результат взаимодействия внешних электронных оболочек атомов. Согласно электронной теории химической связи, образуя химическую связь, каждый атом стремится заполнить внешнюю электронную оболочку до конфигурации, присущей инертным газам. При этом он принимает участие в образовании общей электронной пары, отдает или принимает электроны. Принцип заполнения валентных оболочек до конфигурации инертных газов получил название октетное правило.
|