Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Биосинтез ДНК. Общие определенияСтр 1 из 32Следующая ⇒
Калинин Виталий Леонидович. Репликация генома
СОДЕРЖАНИЕ
ГЛАВА 1. ДНК-полимеразы Биосинтез ДНК. Общие определения Бактериальные ДНК-полимеразы ДНК-полимераза I E.coli ДНК-полимераза II E.coli ДНК-полимераза III E. coli Эукариотические ДНК-полимеразы и ДНК-полимеразы археев ДНК-полимераза a ДНК-полимераза b ДНК-полимераза g ДНК-полимеразы d и e ДНК-полимеразы археев Скользящие зажимы ДНК-полимераз и их погрузчики 1.4.1. Скользящие зажимы – факторы процессивности ДНК-полимераз Погрузчики скользящего зажима Белки ААА+ g-Комплекс погрузчика зажима ДНК-полимеразы III E. coli ЛИТЕРАТУРА ГЛАВА 2. ВСПОМОГАТЕЛЬНЫЕ БЕЛКИ РЕПЛИКАЦИИ ДНК ДНК-геликазы Общая характеристика геликаз Свойства репликативной ДНК-геликазы DnaB E. coli ДНК-геликаза репликативной вилки у эукариотов Механизм действия гексамерных ДНК-геликаз Погрузка гексамерных ДНК-геликаз на ДНК Cопряжение гидролиза НТФ с транслокацией по онДНК Расплетание днДНК Белки, связывающие однонитевую ДНК Праймазы ДНК-лигазы ДНК-топоизомеразы ЛИТЕРАТУРА ГЛАВА 3. Инициация репликации хромосомной ДНК 3.1. Инициация репликации хромосомы E. coli Белок-инициатор DnaA Минимальная область начала репликации oriC y E.coli Этапы инициации репликации на ОНР oriC Регуляция инициации репликации хромосомы E. coli 3.2. Инициация репликации у дрожжей Saccharomyces cerevisiae Области начала репликации (ОНР) ARS и комплекс узнавания ОНР (ORC) Этапы пути инициации репликации на ОНР у дрожжей Инициация репликации у высших эукариотов Белковые компоненты и путь инициации репликации Проблема существования областей начала репликации у высших эукариотов Регуляция инициации репликации в эукариотических клетках ЛИТЕРАТУРА
ГЛАВА 1. ДНК-полимеразы
Биосинтез ДНК. Общие определения
ДНК, служащая первичным носителем генетической информации, является линейным или кольцевым гетерополимером, состоящим из 4 дезоксирибонуклеотидов (dA, dT, dG и dC), соединенных (3’®5’)-фосфодиэфирными связями. ДНК чаще всего находится в форме двойной спирали Крика-Уотсона (даунитевая двунитевая ДНК, или днДНК), в которой две нити спарены друг с другом водородными связями с соблюдением правила комплементарности (остатки А спарены с Т, а остатки G c C). Лишь у некоторых фагов и эукариотических вирусов геномная ДНК может находиться в однонитевом состоянии. Однако участки однонитевой онДНК (бреши) могут возникать в процессах репарации и рекомбинации в днДНК. Под биосинтезом ДНК в широком смысле слова понимается ферментативное удлинение нити ДНК хотя бы на один нуклеотидный остаток с использованием в качестве субстратов дезоксирибонуклеотид-5’-трифосфатов (5’-дНТФ). Соединение друг с другом сегментов нити онДНК, катализируемое ДНК-лигазами, также вызывает удлинение нити, но не сопровождается синтезом ДНК de novo. Синтез нитей ДНК идет в направлении от 5’-конца к 3’-концу, т.е. добавление каждого нового нуклеотида увеличивает длину вновь синтезируемой нити на один остаток со стороны 3’-конца (рис. 1.1, А). Синтез ДНК катализируется ферментами, относящимися к общему классу нуклеотидилтрансфераз, которые вызывают перенос нуклеотида на акцепторную ОН-группу. Большинство ферментов, катализирующих биосинтез ДНК, являются матричными ферментами: они копируют исходный «родительский» полинуклеотид (матрицу) с образованием комплементарной матрице нити вновь синтезированной ДНК. Исключение составляют терминальные дезоксинуклеотидилтрансферазы, нематричным образом присоединяющие нуклеотид к 3’-концу даже изолированной онДНК. Ферменты, использующие в качестве матрицы нить ДНК, называются ДНК-полимеразами. Ферменты, использующие для синтеза нити ДНК матрицу РНК, называются РНК-зависимыми ДНК-полимеразами, или обратными транскриптазами. Обратные транскриптазы используются для синтеза ДНК ретровирусами и параретровирусами и подвижными ретроэлементами в геномах преимущественно эукариотов. К обратным транскриптазам относится и теломераза, участвующая в сохранение терминальных областей линейных эукариотических хромосом (см. гл. 00). Все эти полимеразы во время синтеза ДНК перемещаются по матричной нити полинуклеотидов в направлении 3’®5’. Важной характеристикой ферментов синтеза ДНК является процессивность – способность фермента последовательно осуществлять многие каталитические акты без отрыва от матрицы после каждого из них. Степень процессивности определяется числом нуклеотидных остатков, включенных в растущую цепь за всю серию таких непрерывных актов полимеризации. Полимеразы, отрывающиеся от матрицы после каждого акта включения нуклеотида в растущую цепь, называются дистрибутивными. Механизм реакции полимеризации нуклеиновых кислот является общим для всех ДНК-полимераз, обратных транскриптаз и РНК-полимераз и состоит в нуклеофильном атаке замещении типа SN2 b, g-пирофосфатной части 5’-(д)НТФ 3’-атомом кислорода 3’-концевого остатка РНК или ДНК (рис. 1.1, А). В результате этой реакции новый остаток (д)НМФ присоединяется к 3’-концу цепи и освобождается неорганический пирофосфат PPi. В промежуточном (переходном) состоянии в этой реакции атом Р a-фосфатной группы НТФ имеет пентаковалентную конфигурацию (рис. 1В). Он расположен в центре треугольной бипирамиды, в экваториальной плоскости, в которой находится треугольник атомов О a-фосфатной группы, а в апикальных положениях - 3’-атом О- растущей цепи ДНК и атом O a, b-связи дНТФ. Образование такой структуры обеспечивается 2 катионами Mg2+. Атом КатионА. А понижает рКa у 3’-ОН-группы и превращает ее в группу 3’-O-, а также стабилизирует угол 90o между связью 3’-O- - P и экваториальной плоскостью. Катион В также стабилизирует геометрию переходного состояния и способствует уходу пирофосфатного продукта. Оба катиона Mg2+ координационно связаны с карбоксильными группами остатков асп или глу в полимеразе. Выравнивание первичных аминокислотных последовательностей, предсказанных на основании данных секвенирования структурных генов, позволил разбить все известные ДНК-полимеразы на 6 больших гомологических семейств гомологии. Четыре Три из этих семейств содержат как прокариотические, так и эукариотические ДНК-полимеразы. Семейство С встречается только у эубактерий, семейство D – только у архееев и семейство Х
|