Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Правило ближайшего соседа






    Пусть – множество объектов обучающей последовательности, то есть принадлежность каждого из них тому или иному образу достоверно известна. Пусть также является объектом, ближайшим к распознаваемому . Напомним, что при этом правило ближайшего соседа для классификации состоит в том, что относят к тому классу (образу), которому принадлежит . Естественно, такое отнесение носит случайный характер. Вероятность того, что будет отнесён к , есть апостериорная вероятность . Если очень велико, то вполне можно допустить, что расположен достаточно близко к , настолько близко, что . А это есть не что иное, как рандомизированное решающее правило: относят к с вероятностью . Байесовское решающее правило основано на выборе максимальной апостериорной вероятности, то есть относят к в том случае, если

    .

    Отсюда видно, что если близка к единице, то правило ближайшего соседа даёт решение, в большинстве случаев совпадающее с байесовским. Напомним, что эти рассуждения имеют достаточные основания лишь при очень больших (объёмах обучающей выборки). Такие условия на практике встречаются не часто, но позволяют понять статистический смысл правила ближайшего соседа.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.