Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже. Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Общая, неорганическая и физическая химия.Стр 1 из 51Следующая ⇒
1. Щелочные металлы – способы получения, химические свойства, применение. Гидриды – получение, химические свойства, применение. Щелочны́ е мета́ ллы — элементы главной подгруппы I группы Периодической системы химических элементов Д. И. Менделеева: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs и франций Fr. Эти металлы получили название щелочных, потому что большинство их соединений растворимо в воде. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щёлочами. В Периодической системе они следуют сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на новом энергетическом уровне: их электронная конфигурация ns1. Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — один из самых низких) и электроотрицательности (ЭО). Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней. Химические свойства щелочных металлов. Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, азоту их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд. 1. Взаимодействие с водой. Важное свойство щелочных металлов — их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий. При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет. 2. Взаимодействие с кислородом. Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла. Только литий сгорает на воздухе с образованием оксида стехиометрического состава. При горении натрия в основном образуется пероксид Na2O2 с небольшой примесью надпероксида NaO2. В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды. Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода. Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О22-и надпероксид-ион O2-. Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО3. Все кислородные соединения имеют различную окраску, интенсивность которой углубляется в ряду от Li до Cs. Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами. Пероксиды и надпероксиды проявляют свойства сильных окислителей. Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды. 3. Взаимодействие с другими веществами. Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованием гидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов, сульфидов, нитридов, фосфидов, карбидов и силицидов. При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды. Активно (со взрывом) реагируют щелочные металлы с кислотами. Щелочные металлы растворяются в жидком аммиаке и его производных — аминах и амидах. При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиеся амиды легко разлагаются водой с образованием щёлочи и аммиака. Щелочные металлы взаимодействуют с органическими веществами спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей). 4. Качественное определение щелочных металлов. Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет. Литий служит сырьем в атомной энергетике, используется в ракетной технике. В металлургии применяется для удаления остатков водорода, азота, кислорода, серы. Гидроксидом дополняют электролит в щелочных аккумуляторах. Натрий необходим для атомной энергетики, металлургии, органического синтеза. Цезий и рубидий используются при изготовлении фотоэлементов. Широкое применение находят гидроксиды и соли, особенно хлориды, нитраты, сульфаты, карбонаты щелочных металлов. Катионы обладают биологической активностью, особенно важны для организма человека ионы натрия и калия. Гидриды — соединения водорода с металлами и с имеющими меньшую электроотрицательность, чем водород, неметаллами. Гидриды металлов – обладают только сильными восстановительными свойствами. Химические свойства: · Взаимодействие ионных гидридов с водой: NaH + H2O → NaOH + H2↑ CaH2 + 2H2O → Ca(OH)2 + 2H2↑ · Взаимодействие с оксидами металлов: 2CaO + CaH2 → 2Ca + Ca(OH)2 3ZnO + 2AlH3 → 3Zn + 2Al + 3H2O · Термическое разложение: 2LiH → 2Li + H2↑ 2NaH → 2Na + H2↑ · Взаимодействие с азотом: 3СаН2 + N2 → Ca3N2 + ЗН2 Ионные гидриды получают взаимодействием простых веществ: 2Na + H2 → 2NaH Гидриды широко применяются для проведения различных синтезов, для получения водорода и в химическом анализе. Гидрид кальция используется в качестве осушителя для удаления следов влаги. Гидрид натрия применяют для очистки железа от магнетита. В органической химии он используется в качестве конденсирующего и полимеризующего агента. Раствор в гидроксиде натрия применяют для снятия окалины с тугоплавких металлов и специальных сталей.
2. Кислородные соединения щелочных металлов – получение, свойства, применение. Соли, их свойства. Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла. · Только литий сгорает на воздухе с образованием оксида стехиометрического состава: · При горении натрия в основном образуется пероксид Na2O2 с небольшой примесью надпероксида NaO2: · В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды: Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода: Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О22− и надпероксид-ион O2− . Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО3. Все кислородные соединения имеют различнуюокраску, интенсивность которой увеличивается в ряду от Li до Cs:
Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами: Пероксиды и надпероксиды проявляют свойства сильных окислителей: Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды: Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO4 – сульфат кальция и т. д. Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла: Na+Cl– – хлорид натрия Ca2+SO42– – сульфат кальция и т.д. Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей: 1. Средние соли – все атомы водорода в кислоте замещены металлом: Na2CO3, KNO3 и т.д. 2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO3, NaH2PO4 ит. д. 3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO3, KAl(SO4)2 и т.д. 4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO4 , Zn(OH)Cl и т.д. Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде. Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав: 1. Некоторые соли разлагаются при прокаливании: CaCO3 = CaO + CO2↑ 2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществления этой реакции необходимо, чтобы кислота была более сильная, чем соль, на которую воздействует кислота: 2NaCl + H2 SO4 → Na2SO4 + 2HCl↑. 3. Взаимодействуют с основаниями, образуя новую соль и новое основание: Ba(OH)2 + Mg SO4 → BaSO4↓ + Mg(OH)2. 4. Взаимодействуют друг с другом с образованием новых солей: NaCl + AgNO3 → AgCl + NaNO3 . 5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли: Fe + CuSO4 → FeSO4 + Cu↓.
|