Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Максвелл ввел понятие полного тока,равного сумме токов проводимости (а также конвекционных токов) и смещения.Плотность полного тока 24 страница






§ 259. Гамма-излучение и его свойства

Экспериментально установлено, что g -излучение (см. § 255) не является самостоятель­ным видом радиоактивности, а только сопровождает a - и b -распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. g -Спектр является линейчатым. g -Спектр — это распределение числа g -квантов по энергиям (такое же толкование b -спектра дано в §258). Дискретность g -спектра имеет принципи­альное значение, так как является доказательством дискретности энергетических состо­яний атомных ядер.

В настоящее время твердо установлено, что g -излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбуж­денным, за время примерно 10–13—10–14 с, значительно меньшее времени жизни возбужденного атома (примерно 10–8 с), переходит в основное состояние с испускани­ем g -излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому g -излучение одного и того же радиоак­тивного изотопа может содержать несколько групп g -квантов, отличающихся одна от другой своей энергией.

При g -излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. g -Излучение большинства ядер является столь коротковолно­вым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому g -излучение рассматривают как поток частиц — g -квантов. При радиоактивных распадах различных ядер g -кванты имеют энергии от 10 кэВ до 5 МэВ.

Ядро, находящееся в возбужденном состоянии, может перейти в основное состоя­ние не только при испускании g -кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания g -кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии. Само явление называется внутренней конверсией. Внутренняя конверсия — процесс, конкурирующий с g -излучением.

Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е, отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Е выделяется в виде g -кванта, то частота излучения n определяется из извест­ного соотношения E=hn. Если же испускаются электроны внутренней конверсии, то их энергии равны Е—АK, E—AL,.... где AK, AL,... — работа выхода электрона из К- и L -оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от b -электронов, спектр которых непрерывен (см. § 258). Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электро­нами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.

g -Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении g -излучения сквозь вещество они либо поглощаются, либо рассеива­ются им. g -Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка g -квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, измене­ние которой описывается экспоненциальным законом I = I 0e mx (I 0 и I — интенсивности g -излучения на входе и выходе слоя поглощающего вещества толщиной х, m — коэф­фициент поглощения). Так как g -излучение — самое проникающее излучение, то m для многих веществ — очень малая величина; m зависит от свойств вещества и от энергии g -квантов.

g -Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике до­казывается, что основными процессами, сопровождающими прохождение g -излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.

Фотоэффект, или фотоэлектрическое поглощение g -излучения, — это процесс, при котором атом поглощает g -квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электрона­ми из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом погло­щения в области малых энергий g -квантов (Eg £ 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить g -квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.

По мере увеличения энергии g -квантов (Eg»0, 5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия g -квантов с веществом является комптоновское рассеяние (см. § 206).

При Eg > l, 02 МэВ=2 meс 2 (тe масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероят­ность этого процесса пропорциональна Z 2 и увеличивается с ростом Eg. Поэтому при Eg»10 МэВ основным процессом взаимодействия g -излучения в любом веществе является образованно электронно-позитронных пар.

Если энергия g -кванта превышает энергию связи нуклонов в ядре (7—8 МэВ), то в результате поглощения g -кванта может наблюдаться ядерный фотоэффект — выброс из ядра одного из нуклонов, чаще всего нейтрона.

Большая проникающая способность g -излучения используется в гамма-дефектоско­пии — методе дефектоскопии, основанном на различном поглощении g -излучения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.

Воздействие g -излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения. Различаются:

Поглощенная доза излучения — физическая величина, равная отношению энергии излучения к массе облучаемого вещества.

Единица поглощенной дозы излучения — грей (Гр)*: 1 Гр= 1 Дж/кг — доза из­лучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.

* С. Грей (1666—1736) — английский физик.

 

Экспозиционная доза излучения — физическая величина, равная отношению суммы электрических зарядоввсех ионов одного знака, созданных электронами, освобожден­ными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха.

Единица экспозиционной дозы излучения — кулон на килограмм (Кл/кг); внесистемной единицей является рентген (Р): 1 Р=2, 58× 10–4 Кл/кг.

Биологическая доза — величина, определяющая воздействие излучения на орга­низм.

Единица биологической дозы — биологический эквивалент рентгена (бэр): 1 бэр — доза любого вида ионизирующего излучения, производящая такое же биоло­гическое действие, как и доза рентгеновского или g -излучения в 1 Р (1 бэр = 10–2 Дж/кг).

Мощность дозы излучения — величина, равная отношению дозы излучения к време­ниоблучения. Различают: 1) мощность поглощенной дозы (единица — грей на секунду (Гр/с)); 2) мощность экспозиционной дозы (единица — ампер на килограмм (А/кг)).

§ 260. Резонансное поглощение g -излучения (эффект Мёссбауэра*)

Как уже указывалось, дискретный спектр g -излучения обусловлен дискретностью энер­гетических уровней ядер атомов. Однако, как следует из соотношения неопределен­ностей (215.5), энергия возбужденных состояний ядра принимает значения в пределах D E» h/ D t, где D t — время жизни ядра в возбужденном состоянии. Следовательно, чем меньше D t, тем больше неопределенность энергии D E возбужденного состояния. D E =0только для основного состояния стабильного ядра (для него D t ®¥). Неопределен­ность энергии квантово-механической системы (например, атома), обладающей дискретными уровнями энергии, определяет естественную ширину энергетического уровня (Г). Например, при времени жизни возбужденного состояния, равного 10–13 с, естест­венная ширина энергетического уровня примерно 10–2 эВ.

* Р. Мёссбауэр (р. 1929) — немецкий физик.

 

Неопределенность энергии возбужденного состояния, обусловливаемая конечным временем жизни возбужденных состоянии ядра, приводит к немонохроматичности g -излучения, испускаемого при переходе ядра из возбужденного состояния в основное. Эта немонохроматичность называется естественной шириной линии g -излучения.

При прохождении g -излучения в веществе помимо описанных выше (см. § 259) процессов (фотоэффект, комптоновское рассеяние, образование электронно-позитронных пар) должны в принципе наблюдаться также резонансные эффекты. Если ядро облучить g -квантами с энергией, равной разности одного из возбужденных и основного энергетических состояний ядра, то может иметь место резонансное поглощение g -излучения ядрами: ядро поглощает g -квант той же частоты, что и частота излучаемого ядром g -кванта при переходе ядра из данного возбужденного состояния в основное.

Наблюдение резонансного поглощения g -квантов ядрами считалось долгое время невозможным, так как при переходе ядра из возбужденного состояния с энергией Е в основное (его энергия принята равной нулю) излучаемый g -квант имеет энергию Еg несколько меньшую, чем Е, из-за отдачи ядра в процессе излучения:

где Е я кинетическая энергия отдачи ядра. При возбуждении же ядра и переходе его из основного состояния в возбужденное с энергией Е g -квант должен иметь энергию

где Е я энергия отдачи, которую g -квант должен передать поглощающему ядру.

Таким образом, максимумы линий излучения и поглощения сдвинуты друг от­носительно друга на величину 2 Е я (рис. 344). Используя закон сохранения импульса, согласно которому в рассмотренных процессах излучения и поглощения импульсы g -кванта и ядра должны быть равны, получим

(260.1)

Например, возбужденное состояние изотопа иридия Ir имеет энергию 129 кэВ, а время его жизни порядка 10–10 с, так что ширина уровня Г»4× 10–5 эВ. Энергия же отдачи при излучении с этого уровня, согласно (260.1), приблизительно равна 5× 10–2 эВ, т. е. на три порядка больше ширины уровня. Естественно, что никакое резонансное поглощение в таких условиях невозможно (для наблюдения резонансного поглощения линия поглощения должна совпадать с линией излучения). Из опытов также следовало, что на свободных ядрах резонансное поглощение не наблюдается.

Резонансное поглощение g -излучения в принципе может быть получено только при компенсации потери энергии на отдачу ядра. Эту задачу решил в 1958 г. Р. Мёссбауэр (Нобелевская премия 1961 г.). Он исследовал излучение и поглощение g -излучения в ядрах, находящихся в кристаллической решетке, т. е. в связанном состоянии (опыты проводились при низкой температуре). В данном случае импульс и энергия отдачи передаются не одному ядру, излучающему (поглощающему) g -квант, а всей кристал­лической решетке в целом. Так как кристалл обладает гораздо большей массой по сравнению с массой отдельного ядра, то в соответствии с формулой (260.1) потери энергии на отдачу становятся исчезающе малыми. Поэтому процессы излучения и по­глощения g -излучения происходят практически без потерь энергии (идеально упруго).

Явление упругого испускания (поглощения) g -квантов атомными ядрами, связан­ными в твердом теле, не сопровождающееся изменением внутренней энергии тела, называется эффектом Мёссбауэра. При рассмотренных условиях линии излучения и поглощения g -излучения практически совпадают и имеют весьма малую ширину, равную естественной ширине Г. Эффект Мёссбауэра был открыт на глубоко охлажденном Ir (с понижением температуры колебания решетки «замораживаются»), а впос­ледствии обнаружен более чем на 20 стабильных изотопах (например, 57Fe, 67Zn).

Мёссбауэр вооружил экспериментальную физику новым методом измерений неви­данной прежде точности. Эффект Мёссбауэра позволяет измерять энергии (частоты) излучения с относительной точностью Г/E= 10–15¸ 10–17, поэтому во многих облас­тях науки и техники может служить тончайшим «инструментом» различного рода измерений. Появилась возможность измерять тончайшие детали g -линий, внутренние магнитные и электрические поля в твердых телах и т. д.

Внешнее воздействие (например, зеемановское расщепление ядерных уровней или смещение энергии фотонов при движения в поле тяжести) может привести к очень малому смещению либо линии поглощения, либо линии излучения, иными словами, привести к ослаблению или исчезнове­нию эффекта Мёссбауэра. Это смещение, следовательно, может быть зафиксировано. Подобным образом в лабораторных условиях был обнаружен (1960) такой тончайший эффект, как «гравита­ционное красное смещение», предсказанный общей теорией относительности Эйнштейна.

§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц

Практически все методы наблюдения и регистрации радиоактивных излучений (a, b, g)и частиц основаны на их способности производить ионизацию и возбуждение атомов среды. Заряженные частицы вызывают эти процессы непосредственно, а g -кванты и нейтроны обнаруживаются по ионизации, вызываемой возникающими в результате их взаимодействия с электронами и ядрами атомов среды быстрыми заряженными частицами. Вторичные эффекты, сопровождающие рассмотренные процессы, такие, как вспышка света, электрический ток, потемнение фотопластинки, позволяют регистриро­вать пролетающие частицы, считать их, отличать друг от друга и измерять их энергию.

Приборы, применяемые для регистрации радиоактивных излучений и частиц, де­лятся на две группы:

1) приборы, позволяющие регистрировать прохождение частицы через определен­ный участок пространства и в некоторых случаях определять ее характеристики, например энергию (сцинтилляционный счетчик, черенковский счетчик, импульсная ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик);

2) приборы, позволяющие наблюдать, например фотографировать, следы (треки) частиц в веществе (камера Вильсона, диффузионная камера, пузырьковая камера, ядерные фотоэмульсии).

1. Сцинтилляционный счетчик. Наблюдение сцинтилляций — вспышек света при по­падании быстрых частиц на флуоресцирующий экран — первый метод, позволивший У. Круксу* и Э. Резерфорду на заре ядерной физики (1903) визуально регистриро­вать a -частицы. Сцинтилляционный счетчик — детектор ядерных частиц, основными элементами которого являются сцинтиллятор (кристаллофосфор) (см. § 245) и фотоэле­ктронный умножитель (см. § 105), позволяющий преобразовывать слабые световые вспышки в электрические импульсы, регистрируемые электронной аппаратурой. Обыч­но в качестве сцинтилляторов используют кристаллы некоторых неорганических (ZnS для a -частиц; NaI-Tl, CsI-Tl — для b -частиц и g -квантов) или органических (антрацен, пластмассы — для g -квантов) веществ.

* У. Крукс (1832—1919) — английский физик и химик.

 

Сцинтилляционные счетчики обладают высоким разрешением по времени (10–10—10–5 с), определяемым родом регистрируемых частиц, сцинтиллятором и раз­решающим временем используемой электронной аппаратуры (оно доведено сейчас до 10–8—10–10 с). Для этого типа счетчиков эффективность регистрации—отношение числа зарегистрированных частиц к полному числу частиц, пролетевших в счетчике, примерно 100% для заряженных частиц и 30% для g -квантов. Так как для многих сцинтилляторов (NaI-Tl, CsI-Tl, антрацен, стильбен) интенсивность световой вспышки в широком интервале энергий пропорциональна энергии первичной частицы, то счетчики на данных сцинтилляторах применяются для измерения энергии регистрируемых частиц.

2. Черенковский счетчик. Принцип его работы и свойства излучения Вавило­ва — Черенкова, лежащие в основе работы счетчика, рассмотрены в § 189. Назначение черенковских счетчиков — это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде, и разделение этих частиц по массам. Зная угол испускания излучения (см. (189.1)), можно определить скорость частицы, что при известной массе частицы равносильно определению ее энергии. С другой стороны, если масса частицы не известна, то она может быть определена по независимому измерению энергии частицы. Кроме того, при наличии двух пучков частиц с разными скоростями будут различными и углы испускания излучений, по которым можно искомые частицы определить. Для черенковских счет­чиков разрешение по скоростям (иными словами, по энергиям) составляет 10–3 —10–5. Это позволяет отделять элементарные частицы друг от друга при энергиях порядка 1 ГэВ, когда углы испускания излучения различаются очень мало. Время разрешения счетчиков достигает 10–9 с. Счетчики Черенкова устанавливаются на космических кораблях для исследования космического излучения.

3. Импульсная ионизационная камера — это детектор частиц, действие которого основано на способности заряженных частиц вызывать ионизацию газа. Ионизацион­ная камера представляет собой заполненный газом электрический конденсатор, к элек­тродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой — не разгонялись настолько сильно, чтобы производить вто­ричную ионизацию. Следовательно, в ионизационной камере на ее электродах непо­средственно собираются ноны, возникшие под действием заряженных частиц. Иониза­ционные камеры бывают двух типов: интегрирующие (в них измеряется суммарный ионизационный ток)и импульсные, являющиеся, по существу, счетчиками (в них регистрируется прохождение одиночной частицы и измеряется ее энергия, правда, с довольно низкой точностью, обусловленной малостью выходного импульса).

4. Газоразрядный счетчик. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод) с тонкой проволокой (анод), натянутой по его оси. Хотя газоразрядные счетчики по конструкции похожи на ионизационную камеру, однако в них основную роль играет вторичная ионизация, обусловленная столкновениями первичных ионов с атомами и молекулами газа и стенок. Можно говорить о двух типах газоразрядных счетчиков: пропорциональных (в них газовый разряд несамостоятельный (см. § 106), т. е. гаснет при прекращении действия внешнего ионизатора) и счетчиках Гейгера — Мюллера* (в них разряд самостоятельный (см. § 107), т. е. поддерживается после прекращения действия внешнего ионизатора).

* Э. Мюллер (1911—1977) — немецкий физик.

 

В пропорциональных счетчиках рабочее напряжение выбирается так, чтобы они работали в области вольт-амперной характеристики, соответствующей несамостоя­тельному разряду, в которой выходной импульс пропорционален первичной иониза­ции, т. с. энергии влетевшей в счетчик частицы. Поэтому они не только регистрируют частицу, но и измеряют ее энергию. В пропорциональных счетчиках импульсы, вызыва­емые отдельными частицами, усиливаются в 103 —104 раз (иногда и в 106 раз).

Счетчик Гейгера — Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но работает в области вольт-амперной характеристики, соответствующей самостоятельному разряду (см. § 107), когда выход­ной импульс не зависит от первичной ионизации. Счетчики Гейгера — Мюллера регистрируют частицу без измерения ее энергии. Коэффициент усиления этих счетчиков составляет 108. Для регистрации раздельных импульсов возникший разряд следует гасить. Для этого, например, последовательно с нитью включается такое сопротивление, чтобы возникший в счетчике разряд вызывал на сопротивлении падение напряже­ния, достаточное для прерывания разряда. Временное разрешение счетчиков Гей­гера—Мюллера составляет 10–3—10–7 с. Для газоразрядных счетчиков эффектив­ность регистрации равна примерно 100% для заряженных частиц и примерно 5% для g -квантов.

5. Полупроводниковый счетчик — это детектор частиц, основным элементом кото­рого является полупроводниковый диод (см. § 250). Время разрешения составляет примерно 10–9 с. Полупроводниковые счетчики обладают высокой надежностью, мо­гут работать в магнитных полях. Малая толщина рабочей области (порядка сотни микрометров) полупроводниковых счетчиков не позволяет применять их для измере­ния высокоэнергетических частиц.

6. Камера Вильсона * (1912) — это старейший и на протяжении многих десятиле­тий (вплоть до 50—60-х годов) единственный тип трекового детектора. Выполняется обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом (обычно гелием или аргоном), насыщенным парами воды или спирта. При резком, т. е. адиабатическом, расширении газа пар становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана. Образовавшиеся треки для воспроизводства их пространственного рас­положения фотографируются стереоскопически, т. е. под разными углами. По харак­теру и геометрии треков можно судить о типе прошедших через камеру частиц (например, a -частица оставляет сплошной жирный след, b -частица — тонкий), об энергии частиц (по величине пробега), о плотности ионизации (по количеству капель на единицу длины трека), о количестве участвующих в реакции частиц.

* Ч. Вильсон (1869—1959) — английский физик.

 

Российский ученый Д. В. Скобельцын (1892—1990) значительно расширил возмож­ности камеры Вильсона, поместив ее в сильное магнитное поле (1927). По искривлению траектории заряженных частиц в магнитном поле, т. е. по кривизне трека, можно судить о знаке заряда, а если известен тип частицы (ее заряд и масса), то по радиусу кривизны трека можно определить энергию и массу частицы даже в том случае, если весь трек в камере не умещается (для реакций при высоких энергиях вплоть до сотен мегаэлектрон-вольт). Недостаток камеры Вильсона — ее малое рабочее время, состав­ляющее примерно 1% от времени, затрачиваемого для подготовки камеры к последу­ющему расширению (выравнивание температуры и давления, рассасывание остатков треков, насыщение паров), а также трудоемкость обработки результатов.

7. Диффузионная камера (1936) это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создастся диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлажда­емому (до —60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем.

8. Пузырьковая камера (1952; американский физик Д. Глезер (р. 1926)). В пузырьковой камере рабочим веществом является перегретая (находящаяся под давлением) прозрачная жидкость (жидкие водород, пропан, ксенон). Запускается камера, так же как и камера Вильсона, резким сбросом давления, переводящим жидкость в неустойчивое перегретое состояние. Пролетающая в это время через камеру заряженная частица вызывает резкое вскипание жидкости, и траектория частицы оказывается обозначенной цепочкой пузырьков пара — образуется трек, который, как и в камере Вильсона, фотографируется. Пузырьковая камера работает циклами. Размеры пузырьковых камер примерно такие же, как камеры Вильсона (от десятков сантиметров до 2 м), но их эффективный объем на 2—3 порядка больше, так как жидкости гораздо плотнее газов. Это позволяет использовать пузырьковые камеры для исследования длинных цепей рождений и распадов частиц высоких энергий.

9. Ядерные фотоэмульсии (1927; российский физик Л. В. Мысовский (1888—1939)) — это простейший трековый детектор заряженных частиц. Прохождение заряженной частицы в эмульсии вызывает ионизацию, приводящую к образованию центров скрытого изображения. После проявления следы заряженных частиц обнару­живаются в виде цепочки зерен металлического серебра. Taк как эмульсия — среда более плотная, чем газ или жидкость, используемые в вильсоновской и пузырьковой камерах, то при прочих равных условиях длина трека в эмульсии более короткая. Так, трек длиной 0, 05 см в эмульсии эквивалентен треку в 1 м в камере Вильсона. Поэтому фотоэмульсии применяются для изучения реакций, вызываемых частицами в ускори­телях сверхвысоких энергий и в космических лучах. В практике исследований высокоэнергетических частиц используются также так называемые стопы — большое число маркированных фотоэмульсионных пластинок, помещаемых на пути частиц и после проявления промеряемых под микроскопом.

В настоящее время методы наблюдения и регистрации заряженных частиц и излуче­ний настолько разнообразны, что их описание выходит за рамки курса.

Большое значение начинают играть сравнительно новые (1957) приборы — ис­кровые камеры, использующие преимущества счетчиков (быстрота регистрации) и тре­ковых детекторов (полнота информации о треках). Говоря образно, искровая каме­ра — это набор большого числа очень мелких счетчиков. Поэтому она близка к счет­чикам, так как информация в ней выдается немедленно, без последующей обработки, и в то же время обладает свойствами трекового детектора, так как по действию многих счетчиков можно установить треки частиц.

§ 262. Ядерные реакции и их основные типы

Ядерные реакции — это превращения атомных ядер при взаимодействии с элементар­ными частицами (в том числе и с g -квантами) или друг с другом. Наиболее распрост­раненным видом ядерной реакции является реакция, записываемая символически сле­дующим образом:

где Х и Y — исходное и конечное ядра, а и b — бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

В ядерной физике эффективность взаимодействия характеризуют эффективным сечением s. С каждым видом взаимодействия частицы с ядром связывают свое эффек­тивное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффек­тивное сечение поглощения — процессы поглощения. Эффективное сечение ядерной реакции

где N — число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема п ядер, dN — число этих частиц, вступающих в ядерную реакцию в слое толщиной d x. Эффективное сечение s имеет размерность площади и характеризует вероятность того, что при падении пучка частиц навещество произойдет реакция.

Единица эффективного сечения ядерных процессов — барн (1 барн= 10–28 м2). В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продук­тов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.