Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Максвелл ввел понятие полного тока,равного сумме токов проводимости (а также конвекционных токов) и смещения.Плотность полного тока 26 страница
Управление цепной реакцией осуществляется специальными управляющими стержнями 5 из материалов, сильно поглощающих нейтроны (например, В, Cd). Параметры реактора рассчитываются так, что при полностью вставленных стержнях реакция заведомо не идет, при постепенном вынимании стержней коэффициент размножения нейтронов растет и при некотором их положении принимает значение, равное единице. В этот момент реактор начинает работать. По мере его работы количество делящегося материала в активной зоне уменьшается и происходит ее загрязнение осколками деления, среди которых могут быть сильные поглотители нейтронов. Чтобы реакция не прекратилась, из активной зоны с помощью автоматического устройства постепенно извлекаются управляющие (а часто специальные компенсирующие) стержни. Подобное управление реакцией возможно благодаря существованию запаздывающих нейтронов (см. § 265), испускаемых делящимися ядрами с запаздыванием до 1 мин. Когда ядерное топливо выгорает, реакция прекращается. До нового запуска реактора выгоревшее ядерное топливо извлекают и загружают новое. В реакторе имеются также аварийные стержни, введение которых при внезапном увеличении интенсивности реакции немедленно ее обрывает. Ядерный реактор является мощным источником проникающей радиации (нейтроны, g -излучение), примерно в 1011 раз превышающей санитарные нормы. Поэтому любой реактор имеет биологическую защиту — систему экранов из защитных материалов (например, бетон, свинец, вода), располагающуюся за его отражателем, и пульт дистанционного управления. Ядерные реакторы различаются: 1) по характеру основных материалов, находящихся в активной зоне (ядерное топливо, замедлитель, теплоноситель); в качестве делящихся и сырьевых веществ используются U, Pu, U, U, Th, в качестве замедлителей — вода (обычная н тяжелая), графит, бериллий, органические жидкости и т. д., в качестве теплоносителей — воздух, вода, водяной пар, Не, СО2 и т. д.; 2) по характеру размещения ядерного топлива и замедлителя в активной зоне: гомогенные (оба вещества равномерно смешаны друг с другом) и гетерогенные (оба вещества располагаются порознь в виде блоков); 3) по энергии нейтронов (реакторы на тепловых и быстрых нейтронах; в последних используются нейтроны деления и замедлитель вообще отсутствует); 4) по типу режима (непрерывные и импульсные); 5) по назначению (энергетические, исследовательские, реакторы по производству новых делящихся материалов, радиоактивных изотопов и т. д.). В соответствии с рассмотренными признаками и образовались такие названия, как уран-графитовые, водо-водяные, графито-газовые реакторы и др. Среди ядерных реакторов особое место занимают энергетические реакторы-размножители. В них наряду с выработкой электроэнергии идет процесс воспроизводства ядерного горючего в результате реакции (265.2) или (266.2). Это означает, что в реакторе на естественном или слабообогащенном уране используется не только изотоп U, но и изотоп U. В настоящее время основой ядерной энергетики с воспроизводством горючего являются реакторы на быстрых нейтронах. Впервые ядерная энергия для мирных целей использована в СССР. В Обнинске под руководством И. В. Курчатова введена в эксплуатацию (1954) первая атомная электростанция мощностью 5 МВт. Принцип работы атомной электростанции на водо-водяном реакторе приведен на рис. 346. Урановые блоки 1 погружены в воду 2, которая служит одновременно и замедлителем, и теплоносителем. Горячая вода (она находится под давлением и нагревается до 300°С) из верхней части активной зоны реактора поступает через трубопровод 3 в парогенератор 4, где она испаряется и охлаждается, и возвращается через трубопровод 5 в реактор. Насыщенный пар 6 через трубопровод 7 поступает в паровую турбину 8, возвращаясь после отработки через трубопровод 9 в парогенератор. Турбина вращает электрический генератор 10, ток от которого поступает в электрическую сеть. Создание ядерных реакторов привело к промышленному применению ядерной энергии. Энергетические запасы ядерного горючего в рудах примерно на два порядка превышает запасы химических видов топлива. Поэтому, если, как предполагается, основная доля электроэнергии будет вырабатываться на АЭС, то это, с одной стороны, снизит стоимость электроэнергии, которая сейчас сравнима с вырабатываемой на тепловых электростанциях, а с другой — решит энергетическую проблему на несколько столетий и позволит использовать сжигаемые сейчас нефть и газ в качестве ценного сырья для химической промышленности. В СНГ помимо создания мощных АЭС (например, Нововоронежской общей мощностью примерно 1500 МВт, первой очереди Ленинградской с двумя реакторами по 1000 МВт) большое внимание уделяется созданию небольших АЭС (750—1500 кВт), удобных для эксплуатации в специфических условиях, а также решению задач малой ядерной энергетики. Так, построены первые в мире передвижные АЭС, создан первый в мире реактор («Ромашка»), в котором с помощью полупроводников происходит непосредственное преобразование тепловой энергии в электрическую (в активной зоне содержится 49 кг U, тепловая мощность реактора 40 кВт, электрическая—0, 8 кВт). Огромные возможности для развития атомной энергетики открываются с созданием реакторов-размножителей на быстрых нейтронах (бридеров), в которых выработка энергии сопровождается производством вторичного горючего—плутония, что позволит кардинально решить проблему обеспечения ядерным горючим. Как показывают оценки, 1 т гранита содержит примерно 3 г U и 12 г Th (именно они используются в качестве сырья в реакторах-размножителях), т. е. при потреблении энергии 5× 108 МВт (на два порядка выше, чем сейчас) запасов урана и тория в граните хватит на 109 лет. Техника реакторов на быстрых нейтронах находится в стадии поисков наилучших инженерных решений. Первая опытно-промышленная станция такого типа мощностью 350 МВт построена в г. Шевченко на берегу Каспийского моря. Она используется для производства электроэнергии и опреснения морской воды, обеспечивая водой город и прилегающий район нефтедобычи с населением порядка 150 000 человек. Шевченковская АЭС положила начало новой «атомной отрасли» — опреснению соленых вод, которая в связи с дефицитом пресноводных ресурсов во многих районах может иметь большое значение. § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций Источником огромной энергии может служить реакция синтеза атомных ядер — образование из легких ядер более тяжелых. Удельная энергия связи ядер (см. рис. 342) резко увеличивается при переходе от ядер тяжелого водорода (дейтерия Н и трития Н) к литию Li и особенно к гелию Нe, т. е. реакции синтеза легких ядер в более тяжелые должны сопровождаться выделением большого количества энергии, что действительно подтверждается расчетами. В качестве примеров рассмотрим реакции синтеза: (268.1) где Q — энерговыделение. Реакции синтеза атомных ядер обладают той особенностью, что в них энергия, выделяемая на один нуклон, значительно больше, чем в реакциях деления тяжелых ядер. В самом деле, если при делении ядра U выделяется энергия примерно 200 МэВ, что составляет на один нуклон примерно 0, 84 МэВ, то в реакции (268.1) эта величина равна 17, 6/5 МэВ» 3, 5 МэВ. Оценим на примере реакции синтеза ядер дейтерия Н температуру ее протекания. Для соединения ядер дейтерия их надо сблизить до расстояния 2× 10–15 м, равного радиусу действия ядерных сил, преодолевая при этом потенциальную энергию отталкивания »0, 7 МэВ. Так как на долю каждого сталкивающегося ядра приходится половина указанной энергии, то средней энергии теплового движения, равной 0, 35 МэВ, соответствует температура, приблизительно равная 2, 6× 109 К. Следовательно, реакция синтеза ядер дейтерия может происходить лишь при температуре, на два порядка превышающей температуру центральных областей Солнца (примерно 1, 3× 107 К). Однако оказывается, что для протекания реакции синтеза атомных ядер достаточно температуры порядка 107 К. Это связано с двумя факторами: 1) при температурах, характерных для реакций синтеза атомных ядер, любое вещество находится в состоянии плазмы, распределение частиц которой подчиняется закону Максвелла; поэтому всегда имеется некоторое число ядер, энергия которых значительно превышает среднее значение; 2) синтез ядер может происходить вследствие туннельного эффекта (см. § 221). Реакции синтеза легких атомных ядер в более тяжелые, происходящие при сверхвысоких температурах (примерно 107 К и выше), называются термоядерными реакциями. Термоядерные реакции являются, по-видимому, одним из источников энергии Солнца и звезд. В принципе высказаны два предположения о возможных способах протекания термоядерных реакций на Солнце: 1) протонно-протонный, или водородный, цикл, характерный для температур (примерно 107 К): 2) углеродно-азотный, или углеродный, цикл, характерный для более высоких температур (примерно 2× 107 К): В результате этого цикла четыре протона превращаются в ядро гелия и выделяется энергия, равная 26, 7 МэВ. Ядра же углерода, число которых остается неизменным, участвуют в реакции в роли катализатора. Термоядерные реакции дают наибольший выход энергии на единицу массы «горючего», чем любые другие превращения, в том числе и деление тяжелых ядер. Например, количество дейтерия в стакане простой воды энергетически эквивалентно примерно 60 л бензина. Поэтому заманчива перспектива осуществления термоядерных реакций искусственным путем. Впервые искусственная термоядерная реакция осуществлена в нашей стране (1953), а затем (через полгода) в США в виде взрыва водородной (термоядерной) бомбы, являющегося неуправляемой реакцией. Взрывчатым веществом служила смесь дейтерия и трития, а запалом — «обычная» атомная бомба, при взрыве которой возникает необходимая для протекания термоядерной реакции температура. Особый интерес представляет осуществление управляемой термоядерной реакции, для обеспечения которой необходимо создание и поддержание в ограниченном объеме температуры порядка 108 К. Так как при данной температуре термоядерное рабочее вещество представляет собой полностью ионизованную плазму (см. § 108), возникает проблема ее эффективной термоизоляции от стенок рабочего объема. На данном этапе развития считается, что основной путь в этом направлении — это удержание плазмы в ограниченном объеме сильными магнитными полями специальной формы. Начало широкого международного сотрудничества в области физики высокотемпературной плазмы и управляемого термоядерного синтеза положено работами И. В. Курчатова. Под руководством Л. А. Арцимовича коллектив ученых Института атомной энергии (ИАЭ) им. И. В. Курчатова осуществил широкий круг исследований, результатом которых явился пуск летом 1975 г. в ИАЭ крупневшей в мире термоядерной установки «Токамак-10» (Т-10). В Т-10, как и во всех установках этого типа, плазма создается в тороидальной камере, находящейся в магнитном поле, а само плазменное образование — плазменный шнур — также имеет форму тора. В Т-10 плазма с температурой примерно (7¸ 8)× 106 К и плотностью примерно 1014 частиц/см3 создается в объеме, приблизительно равном 5 м3, на время около 1 с. Однако следует отметить, что до осуществления критерия Лоусона * — условия, необходимого для начала самоподдерживающейся термоядерной реакции, — еще остается значительный «путь»: примерно 20 раз по nt (произведение плотности частиц на время удержания плазмы) и примерно 10 раз по температуре. Результаты, полученные на Т-10, вместе с результатами, ожидаемыми на создаваемых установках (например, Т-20), по мере решения разного рода инженерно-технологических проблем служат базой для создания термоядерного реактора «Токамака». * Дж. Лоусон (р. 1923) — английский физик.
Управляемый термоядерный синтез открывает человечеству доступ к неисчерпаемой «кладовой» ядерной энергии, заключенной в легких элементах. Наиболее заманчивой в этом смысле является возможность извлечения энергии из дейтерия, содержащегося в обычной воде. В самом деле, количество дейтерия в океанской воде составляет примерно 4× 1013 т, чему соответствует энергетический запас 1017 МВт× год. Другими словами, эти ресурсы не ограничены. Остается только надеяться, что решение этих проблем — дело недалекого будущего.
Глава 33Элементы физики элементарных частиц § 269. Космическое излучение Развитие физики элементарных частиц тесно связано с изучением космического излучения — излучения, приходящего на Землю практически изотропно со всех направлений космического пространства. Измерения интенсивности космического излучения, проводимые методами, аналогичными методам регистрации радиоактивных излучений и частиц (см. § 261), приводят к выводу, что его интенсивность быстро растет с высотой, достигает максимума, затем уменьшается и с h»50 км остается практически постоянной (рис. 347). Различают первичное и вторичное космические излучения. Излучение, приходящее непосредственно из космоса, называют первичным космическим излучением. Исследование его состава показало, что первичное излучение представляет собой поток элементарных частиц высокой энергии, причем более 90% из них составляют протоны с энергией примерно 109—1013 эВ, около 7%—a-частицы и лишь небольшая доля (около 1%) приходится на ядра более тяжелых элементов (Z> 20). По современным представлениям, основанным на данных астрофизики и радиоастрономии, считается, что первичное космическое излучение имеет в основном галактическое происхождение. Считается, что ускорение частиц до столь высоких энергий может происходить при столкновении с движущимися межзвездными магнитными полями. При h ³ 50 км (рис. 347) интенсивность космического излучения постоянна; на этих высотах наблюдается лишь первичное излучение. С приближением к Земле интенсивность космического излучения возрастает, что свидетельствует о появлении вторичного космического излучения, которое образуется в результате взаимодействия первичного космического излучения с ядрами атомов земной атмосферы. Во вторичном космическом излучении встречаются практически все известные элементарные частицы. При h < 20 км космическое излучение является вторичным; с уменьшением h его интенсивность понижается, поскольку вторичные частицы по мере продвижения к поверхности Земли испытывают поглощение. В составе вторичного космического излучения можно выделить два компонента: мягкий (сильно поглощается свинцом) и жесткий (обладает в свинце большой проникающей способностью). Происхождение мягкого компонента объясняется следующим образом. В космическом пространстве всегда имеются g-кванты с энергией Е> 2 тeс 2, которые в поле атомных ядер превращаются в электронно-позитронные пары (см. § 263). Образовавшиеся таким образом электроны и позитроны, тормозясь, в свою очередь, создают g-кванты, энергия которых еще достаточна для образования новых электронно-позитронных пар и т. д. до тех пор, пока энергия g-квантов не будет меньше 2 тeс 2 (рис. 348). Описанный процесс называется электронно-позитронно-фотонным (или каскадным) ливнем. Хотя первичные частицы, приводящие к образованию этих ливней, и обладают огромными энергиями, но ливневые частицы являются «мягкими» — не проходят через большие толщи вещества. Таким образом, ливневые частицы — электроны, позитроны и g-кванты — и представляют собой мягкий компонент вторичного космического излучения. Природа жесткого компонента будет рассмотрена в дальнейшем (см. § 270). Исследование космического излучения, с одной стороны, позволило на начальном этапе развития физики элементарных частиц получить основные экспериментальные данные, на которых базировалась эта область науки, а с другой — дало возможность и сейчас изучать процессы с частицами сверхвысоких энергий вплоть до 1021 эВ, которые еще не получены искусственным путем. С начала 50-х годов для исследования элементарных частиц стали применять ускорители (позволяют ускорить частицы до сотен гигаэлектрон-вольт; см. § 116), в связи с чем космическое излучение утратило свою исключительность при их изучении, оставаясь лишь основным «источником» частиц в области сверхвысоких энергий. § 270. Мюоны и их свойства Японский физик X. Юкава (1907—1981), изучая природу ядерных сил (см. § 254) и развивая идеи отечественных ученых И. Б. Тамма и Д. Д. Иваненко об их обменном характере, выдвинул в 1935 г. гипотезу о существовании частиц с массой, в 200—300 раз превышающей массу электрона. Эти частицы должны, согласно Юкаве, выполнять роль носителей ядерного взаимодействия, подобно тому, как фотоны являются носителями электромагнитного взаимодействия. К. Андерсон и С. Неддермейер, изучая поглощение жесткого компонента вторичного космического излучения в свинцовых фильтрах с помощью камеры Вильсона, помещенной в магнитное поле, действительно обнаружили (1936) частицы массой, близкой к ожидаемой (207 me). Они были названы впоследствии мюонами. Доказано, что жесткий компонент вторичного космического излучения состоит в основном из мюонов, которые, как будет показано ниже, образуются вследствие распада более тяжелых заряженных частиц (p- и К -мезонов). Так как масса мюонов большая, то радиационные потери для них пренебрежимо малы, а поэтому жесткий компонент вторичного излучения обладает большой проникающей способностью. Существуют положительный (m+) и отрицательный (m–) мюоны; заряд мюонов равен элементарному заряду е. Масса мюонов (оценивается по производимому ими ионизационному действию) равна 206, 8 тe время жизни m+ и m–-мюонов одинаково и равно 2, 2× 10–6 с. Исследования изменения интенсивности жесткого компонента вторичного космического излучения с высотой показали, что на меньших высотах потоки мюонов менее интенсивны. Это говорит о том, что мюоны претерпевают самопроизвольный распад, являясь, таким образом, нестабильными частицами. Распад мюонов происходит по следующим схемам: (270.1) (270.2) где и — соответственно «мюонные» нейтрино и антинейтрино, которые, как предположил Б. М. Понтекорво (Россия, р. 1913 г.) и экспериментально доказал (1962) американский физик Л. Ледерман (р. 1922), отличаются от и — «электронных» нейтрино и антинейтрино, сопутствующих испусканию позитрона и электрона соответственно (см. § 263, 258). Существование и следует из законов сохранения энергии и спина. Из схем распада (270.1) и (270.2) следует, что спины мюонов, как и электрона, должны быть равны 1/2 (в единицах ), так как спины нейтрино (1/2) и антинейтрино (–1/2) взаимно компенсируются. Дальнейшие эксперименты привели к выводу, что мюоны не взаимодействуют или взаимодействуют весьма слабо с атомными ядрами, иными словами, являются ядерно-неактивными частицами. Мюоны, с одной стороны, из-за ядерной пассивности не могут рождаться при взаимодействии первичного компонента космического излучения с ядрами атомов атмосферы, а с другой — из-за нестабильности не могут находиться в составе первичного космического излучения. Следовательно, отождествить мюоны с частицами, которые, согласно X. Юкаве, являлись бы носителями ядерного взаимодействия, не удалось, так как такие частицы должны интенсивно взаимодействовать с ядрами. Эти рассуждения и накопленный впоследствии экспериментальный материал привели к выводу о том, что должны существовать какие-то ядерно-активные частицы, распад которых и приводит к образованию мюонов. Действительно, в 1947 г. была обнаружена частица, обладающая свойствами, предсказанными Юкавой, которая распадается на мюон и нейтрино. Этой частицей оказался p-мезон. § 271. Мезоны и их свойства С. Пауэлл (1903—1969; английский физик) с сотрудниками, подвергая на большой высоте ядерные фотоэмульсии действию космических лучей (1947), обнаружили ядерно-активные частицы — так называемые p-мезоны (от греч. «мезос» — средний), или пионы. В том же году пионы были получены искусственно в лабораторных условиях при бомбардировке мишеней из Be, С и Сu a-частицами, ускоренными в синхроциклотроне до 300 МэВ. p-Мезоны сильно взаимодействуют с нуклонами и атомными ядрами и, по современным представлениям, обусловливают существование ядерных сил. Существуют положительный (p+), отрицательный (p–) (их заряд равен элементарному заряду е) и нейтральный (p0) мезоны. Масса p+ - и p–-мезонов одинакова и равна 273, 1 me масса p0-мезона равна 264, 1 me. Все пионы нестабильны: время жизни соответственно для заряженных и нейтрального p-мезонов составляет 2, 6× 10–8 и 0, 8× 10–16 с. Распад заряженных пионов происходит в основном по схемам (271.1) (271.2) где мюоны испытывают дальнейший распад по рассмотренным выше схемам (270.1) и (270.2). Из схем распада (271.1) и (271.2) следует, что спины заряженных p-мезонов должны быть либо целыми (в единицах ), либо равны нулю. Спины заряженных p-мезонов, по ряду других экспериментальных данных, оказались равными нулю. Нейтральный пион распадается на два g -кванта: Спин p0-мезона, так же как и спин p+-мезона, равен нулю. Исследования в космических лучах методом фотоэмульсий (1949) и изучение реакций с участием частиц высоких энергий, полученных на ускорителях, привели к открытию К -мезонов, или каонов, — частиц с нулевым спином и с массами, приблизительно равными 970 me. В настоящее время известно четыре типа каонов: положительно заряженный (К+), отрицательно заряженный (К –) и два нейтральных ( и ). Время жизни K -мезонов лежит в пределах 10–8—10–10 с в зависимости от их типа. Существует несколько схем распада K -мезонов. Распад заряженных K -мезонов происходит преимущественно по схемам Распад нейтральных K -мезонов в основном происходит по следующим схемам (в порядке убывания вероятности распада): § 272. Типы взаимодействий элементарных частиц Согласно современным представлениям, в природе осуществляется четыре типа фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное. Сильное, или ядерное, взаимодействие обусловливает связь протонов и нейтронов в ядрах атомов и обеспечивает исключительную прочность этих образований, лежащую в основе стабильности вещества в земных условиях. Электромагнитное взаимодействие характеризуется как взаимодействие, в основе которого лежит связь с электромагнитным полем. Оно характерно для всех элементарных частиц, за исключением нейтрино, антинейтрино и фотона. Электромагнитное взаимодействие, в частности, ответственно за существование атомов и молекул, обусловливая взаимодействие в них положительно заряженных ядер и отрицательно заряженных электронов. Слабое взаимодействие — наиболее медленное из всех взаимодействий, протекающих в микромире. Оно ответственно за взаимодействие частиц, происходящих с участием нейтрино или антинейтрино (например, b-распад, m-распад), а также за безнейтринные процессы распада, характеризующиеся довольно большим временем жизни распадающейся частицы (t 10–10 с). Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц оно пренебрежимо мало и, по-видимому, в процессах микромира несущественно. Сильное взаимодействие примерно в 100 раз превосходит электромагнитное и в 1014 раз — слабое.Чем сильнее взаимодействие, тем с большей интенсивностью протекают процессы. Так, время жизни частиц, называемых резонансами, распад которых описывается сильным взаимодействием, составляет примерно 10–23 с; время жизни p0-мезона, за распад которого ответственно электромагнитное взаимодействие, составляет 10–16 с; для распадов, за которые ответственно слабое взаимодействие, характерны времена жизни 10–10—10–8 с. Как сильное, так и слабое взаимодействия — короткодействующие. Радиус действия сильного взаимодействия составляет примерно 10–15 м, слабого — не превышает 10–19 м. Радиус действия электромагнитного взаимодействия практически не ограничен.
Элементарные частицы принято делить на три группы: 1) фотоны; эта группа состоит всего лишь из одной частицы — фотона — кванта электромагнитного излучения; 2) лептоны (от греч. «лептос» — легкий), участвующие только в электромагнитном и слабом взаимодействиях. К лептонам относятся электронное и мюонное нейтрино, электрон, мюон и открытый в 1975 г. тяжелый лептон — t-лептон, или таон, с массой примерно 3487 me, а также соответствующие им античастицы. Название лептонов связано с тем, что массы первых известных лептонов были меньше масс всех других частиц. К лептонам относится также таонное нейтрино, существование которого в последнее время также установлено;
|