Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Классический метод расчета переходных процессов.






Определение классического метода расчета переходных процессов. Классическим методом расчета переходных процессов называют метод, в котором решение дифференциального уравне­ния представляет собой сумму принужденной и свободной состав­ляющих. Определение постоянных интегрирования, входящих в вы­ражение для свободного тока (напряжения), производят путем совместного решения системы линейных алгебраических уравне­ний по известным значениям корней характеристического уравне­ния, а также по известным значениям свободной составляющей тока (напряжения) и ее производных, взятых при t=0+.

Определение постоянных интегрирования в классическом методе. Как известно из предыдущего, любой свободный ток (на­пряжение) можно представить в виде суммы экспоненциальных слагаемых. Число членов суммы равно числу корнем характеристи­ческого уравнения.

При двух действительных неравных корнях

 
 

 
 

при трех действительных неравных корнях

 

Для любой схемы с помощью уравнений Кирхгофа и законов ком­мутации можно найти: 1) числовое значение искомого свободного тока при t=0+, обозначим его iсв(0+); 2) числовое значение первой, а если понадобится, то и высших производных от свободного тока, взятых при t=0+. Числовое значение первой производной от свободного тока при t=0+ обозначим iсв(0+); второй — iсв¢ (0+) и т. д.

Рассмотрим методику определения постоянных интегрирования А1, А2,..., полагая известными iсв(0+), iсв¢ (0+), iсв¢ ¢ (0+) и значения корней p1, p2, ….

 
 

Если характеристическое уравнение цепи представляет собой уравнение первой степени, то iсв=Aept. Постоянную интегрирова­ния А определяют по значению свободного тока iсв(0+):

 

 
 

Если дано характеристическое уравнение второй степени и его корни действительны и не равны, то

 

Продифференцируем это уравнение по времени:

 
 

 
 

Запишем уравнения (8.16) и (8.16а) при t = 0 (учтем, что при t = 0 ep1t = ep2t = 1). В результате получим

 

В этой системе уравнений известными являются iсв(0+), iсв¢ (0+), p1 и p2; неизвестными — А1 и А2.

 

 
 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.