![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Показатели вариации и их значение, методика их расчета.
В практическом анализе оценка рассеяния значений признака может оказаться не менее важной, чем определение средней. Самая грубая оценка рассеяния, легко определяемая по данным вариационного ряда, может быть дана с помощью размаха вариации –характеризует границы вариации изучаемого признака. где xmax и xmin - наибольшее и наименьшее значения варьирующего признака. Показывает, на сколько велико различие между единицами совокупности, имеющими самое маленькое и самое большое значение признака. Показатель основан на крайних значениях варьирующего признака и не отражает отклонений всех вариант в ряду. Однако этот показатель не дает представления о характере вариационного ряда, расположении вариантов вокруг средней и может сильно меняться, если добавить или исключить крайние варианты (когда эти значения аномальны для данной совокупности). В этих случаях размах вариации дает искаженную амплитуду колебания против нормальных ее размеров. Поэтому следует очистить совокупность от аномальных наблюдений, прежде чем определять размах вариации. Для оценки колеблемости значений признака относительно средней используются характеристики рассеяния. Они различаются выбранной формой средней и способами оценки отклонений от нее отдельных вариантов. К таким показателям относятся: - среднее линейное отклонение; - дисперсия; - среднее квадратическое отклонение; - коэффициент вариации. Среднее линейное отклонение есть средняя арифметическая из абсолютных значений отклонений отдельных вариантов от их средней величины:
где xi - значение признака в дискретном ряду или середина интервала в интервальном распределении; fi - частота признака. Среднее линейное отклонение выражено в тех же единицах измерения, что и варианты или их средняя. Оно дает абсолютную меру вариации. Показывает, на какую величину отклоняется признак в изучаемой совокупности от средней величины признака. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Чтобы избежать равенства нулю суммы отклонений от средней, используют либо абсолютные значения отклонений, либо их четные степени, например квадраты. В последнем случае мера вариации называется дисперсией и обозначается D или s2: Дисперсия представляет собой средний квадрат отклонений индивидуальных значений признака от их средних величин. В зависимости от исходных данных вычисляется по формулам:
Расчет дисперсии может быть упрощен.
Вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, измеряя их в квадратных единицах. Поэтому на основе дисперсии вводятся еще две характеристики: среднее квадратическое отклонение и коэффициент вариации. Среднее квадратическое отклонение измеряется в тех же единицах, что и варьирующий признак, и исчисляется путем извлечения квадратного корня из дисперсии:
Среднее квадратическое отклонение, как и среднее линейное отклонение, показывает, на сколько в среднем отклоняются конкретные варианты признака от его среднего значения. Величина о часто используется в качестве единицы измерения отклонений от средней арифметической. Отклонение, выраженное в s, называется нормированным или стандартизированным. Коэффициент вариации – характеризует меру вариации значений признака вокруг средней величины. Дает относительную оценку вариации и получается путем сопоставления среднего линейного или среднего квадратического отклонения со средним уровнем явления, а результат выражается в процентах:
Так как коэффициенты вариации дают относительную характеристику однородности явлений и процессов, они позволяют сравнивать степень вариации разных признаков.
|