Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Простейшие преобразования на плоскости
Рассмотрим преобразования на плоскости. Для начала заметим, что точки на плоскости задаются с помощью двух ее координат. Таким образом, геометрически каждая точка задается значениями координат вектора относительно выбранной системы координат. Координаты точек можно рассматривать как элементы матрицы [ x, y ], т.е. в виде вектор-строки или вектор-столбца. Положением этих точек управляют путем преобразования матрицы. Точки на плоскости x y можно перенести в новые позиции путем добавления к координатам этих точек констант переноса:
Рассмотрим результаты матричного умножения матрицы [ x, y ], определяющей точку Р и матрицы преобразований 2х2 общего вида: Проведем анализ полученных результатов, рассматривая x * и y * как преобразованные координаты. Для этого исследуем несколько частных случаев. Рассмотрим случай, когда a = d = 1 и c = b = 0. Матрица преобразований приводит к матрице, идентичной исходной, При этом изменений координат точки Р не происходит. Если теперь d = 1, b = c = 0, a = const, то: Как видно, это приводит к изменению масштаба в направлении х, так как х*=ах. Следовательно, данное матричное преобразование эквивалентно перемещению исходной точки в направлении х. Теперь положим b = c = 0, т.е.: В результате получаем изменение масштабов в направлениях x и y. Если a¹ d, то перемещения вдоль осей неодинаковы. Если a = d > 1, то имеет место увеличение масштаба координат точки Р. Если 0 < a=d < 1, то будет иметь место уменьшение масштаба координат точки Р. Если a или (и) d отрицательны, то происходит отображение координат точек. Рассмотрим это, положив b = c = 0, d = 1 и а = -1, тогда:
Произошло отображение точки относительно оси у. В случае b = c = 0, Заметим, что отображение и изменение масштаба вызывают только диагональные элементы матрицы преобразования. Преобразование общего вида, примененное к началу координат не приведет к изменению координат точки (0, 0). Следовательно, начало координат инвариантно при общем преобразовании. Это ограничение преодолевается за счет использования однородных координат.
|