Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Основные сведения. В отличие от линейного случая, нелинейные системы могут иметь несколько положений равновесия, причем одни из них являются устойчивыми






    В отличие от линейного случая, нелинейные системы могут иметь несколько положений равновесия, причем одни из них являются устойчивыми, а другие- неустойчивыми. Кроме того, при некоторых сочетаниях параметров и внешних воздействий система может не иметь реальных положений равновесия.

    Для определения точки равновесия необходимо приравнять нулю производные в дифференциальном уравнении состояния системы

    ẋ = f(x, u), x∈ Rn, u ∈ Rm

    Если полученные при этом решения будут действительными, то положение равновесия существует, в противном случае оно отсутствует.

    Для анализа устойчивости положения равновесия можно использовать метод линейного приближения системы дифференциальных уравнений объекта. С этой целью разложим функцию ƒ (·) в ряд Тейлора при u =const малой окрестности состояния равновесия x0 и, ограничившись первым членом ряда разложения, получим матрицу линейного приближения в виде

    Для линеаризованной системы

    ẋ = A x

    анализ устойчивости положения равновесия сводится к анализу собственных значений матрицы A.

    Устойчивость положения равновесия нелинейной системы второго порядка можно определить по ее фазовому портрету, построенному с помощью метода изоклин или полученному в результате моделирования. Процессы в нелинейной автономной системе второго порядка развиваются в силу уравнений

    1 = ƒ 1(x1, x2),

    2 = ƒ 2(x1, x2),

    где ƒ 1, ƒ 2 - известные нелинейные функции, которые описывают нелинейные зависимости (нелинейности) между входными сигналами звеньев. Различают однозначные и неоднозначные нелинейности. К первому виду относятся характеристики, для которых значение ƒ i определяется только текущим значением аргументов. В противном случае характеристика звена называется неоднозначной (значение входной переменной зависит, например, от текущего значения и производной входной переменной).

    Анализируя поведение фазовых траекторий вблизи положения равновесия, можно оценить устойчивость объекта экспериментально. Для этого в объекте задаются начальные условия в малой окрестности точки равновесия. Если фазовая траектория стремится к точке, соответствующей положению равновесия, то объект устойчив.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.