Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Продолжение таблицы 2






i          
Vi - 0, 072 0, 263 0, 047 - 0, 005 0, 172
V2i 5, 184× 10-3 69, 169× 10-3 2, 209× 10-3 0, 025× 10-3 29, 584× 10-3

 

Продолжение таблицы 2

i          
Vi 0, 092 0, 068 - 0, 017 - 0, 036 - 0, 062
V2i 8, 464× 10-3 4, 624× 10-3 0, 289× 10-3 1, 296× 10-3 3, 844× 10-3

 

Продолжение таблицы 2

i          
Vi - 0, 006 - 0, 019 - 0, 031 - 0, 022 0, 119
V2i 0, 036× 10-3 0, 361× 10-3 0, 961× 10-3 0, 484× 10-3 14, 161× 10-3

Правильность вычислений и Vi определяем по формуле . Если , то имеют место ошибки в вычислениях.

4 Вычисляем оценку среднего квадратического отклонения результатов наблюдений

кОм.

5 С помощью критерия грубых погрешностей (критерий «трёх сигм») проверяем наличие грубых погрешностей.

В соответствии с этим критерием, если , то такое наблюдение содержит грубую погрешность. В случае обнаружения грубой погрешности в i-м наблюдении необходимо это наблюдение исключить из результатов наблюдений и повторить вычисления по пп. 1-5 для меньшего числа n.

В решаемой задаче кОм и, как видно из таблицы 2, грубые погрешности отсутствуют.

6 Определяем оценку среднего квадратического отклонения результата измерения из выражения

кОм.

7 Выдвигаем гипотезу о принадлежности результатов наблюдений нормальному распределению и проверяем эту гипотезу.

а) При числе результатов наблюдений n > 50 для проверки принадлежности их к нормальному распределению в соответствии с ГОСТ 11.006-74 предпочти-

тельным является один из критериев c2 Пирсона или Мизеса-Смирнова.

При числе результатов наблюдений 50> n> 15 для проверки принадлежности их к нормальному распределению предпочтительным является составной критерий, приведённый в [9].

При числе результатов наблюдений n£ 15 принадлежность их к нормальному распределению не проверяют. При этом нахождение доверительных границ случайной погрешности результата измерения по методике, предусмотренной [1], возможно в том случае, если заранее известно, что результаты наблюдений принадлежат нормальному распределению. Если условие принадлежности результатов наблюдений нормальному распределению не выполняется, методы вычисления доверительных границ случайной погрешности должны быть указаны в методике выполнения конкретных измерений.

В решаемой задаче n = 25. Поэтому принадлежность результатов наблюдений к нормальному распределению проверяем по составному критерию.

б) Критерий 1. Вычисляем смещённую оценку среднего квадратического отклонения по формуле

кОм.

Вычисляем параметр

.

Результаты наблюдений можно считать распределенными нормально, если

,

где и - квантили распределения, получаемые из таблицы 3 по n, q1/2 и (1 - q1/2), причем q1 - заранее выбранный уровень значимости критерия.

Выбираем уровень значимости q равным 5 %. Из таблицы 3 находим = =0, 868, = 0, 704. Сравнивая полученное значение с этими величинами, делаем вывод о том, что по критерию 1 результаты наблюдений распределены по нормальному закону.

Критерий 2. Этот критерий используется дополнительно для проверки «концов» распределений.

Гипотеза о нормальности по критерию 2 не отвергается, если не более m разностей Vi превзошли значение , где верная квантиль распределения нормированной функции Лапласа отвечает вероятности P/2.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.