![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Краткие теоретические сведения. Считают, что переменные зависимы, если их значения каким-то образом согласованы друг с другом в имеющихся наблюдениях
Считают, что переменные зависимы, если их значения каким-то образом согласованы друг с другом в имеющихся наблюдениях. Например, рост человека однозначно связан с его весом, объем винчестера – с его ценой, количество автомобилей в городе с количеством аварий и т.д. Реальные процессы или объекты могут характеризоваться набором переменных, которые бывают зависимые и независимые. Независимые переменные (входные, показатели-аргументы, предикторные) – переменные описывающие условия формирования реального изучаемого процесса или функционирования объекта. Это переменные, которые поддаются заданию, измерению или частичному управлению или регулированию. Зависимые переменные (выходные, отклики, результирующие или объясняющие) – переменные, которые характеризуют процесс или результат (эффективность) функционирования объекта. Обычно это переменные позволяющие прогнозировать процесс или описывать объект. Случайные переменные (латентные, остаточные) – скрытые, которые не поддаются непосредственному измерению случайные остаточные компоненты, отражающие влияние на зависимые переменные неучтенных факторов, а также случайные ошибки в измерении или определении показателей. Часто эти переменные именуют «остатками». Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Зависимые и независимые переменные могут быть: ü количественные, т.е. скалярно измеряющие в определенной шкале некие свойства (денежный доход, численность рабочих, физические величины и т.д.); ü порядковые (ординарные), т.е. позволяющие упорядочить некоторые свойства процесса или объекта по степени их проявления (разряд рабочего, уровень образования и т.д.); ü классификационные (номинальные), т.е. разбивающие обследованную совокупность на однородные классы, которые не поддаются упорядочиванию (по определенным свойствам). Например: профессия рабочего, мотив эмиграции и т.д. В зависимости от видов переменных для исследования взаимосвязей применяются различные разделы статистики (см. табл. 3.1).
Таблица 3.1. – Основные разделы статистического анализа
Основные разделы этой таблицы реализованы в виде модулей в программном продукте STATISTICA. Ключевым понятием, описывающим связи между переменными, является корреляция (от английского слова correlation – согласование, связь, взаимозависимость). Две переменные могут быть связаны либо функциональной зависимостью, либо статистической, либо быть независимыми между собой. Статистическая зависимость – зависимость, при которой изменение одной из величин влечет изменение распределения другой. Если при изменении одной из величин изменяется среднее значение другой величины, то такая статистическая зависимость называется корреляционной. Коэффициент корреляции (парный коэффициент корреляции, коэффициент корреляции Пирсона) – характеризует степень тесноты связи между нормально распределенными случайными переменными X и Y. Выборочное значение r коэффициента корреляции подсчитывается по формуле: Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
Значение r является измерителем степени тесноты линейной статистической связи между переменными и изменяется в пределах Оценка значимости коэффициента корреляции основывается на проверке гипотезы об отсутствии корреляционной связи между переменными [5, стр. 327]. Известно, что величина
то гипотеза об отсутствии корреляционной связи принимается. Если Корреляционное отношение – измеритель степени тесноты корреляционной связи любой формы (в том числе и нелинейной). Для определения корреляционного отношения область значений независимой переменной X разбивают на интервалы группирования, определяют средние ординаты
где Частный коэффициент корреляции позволяет оценить степень тесноты линейной связи между двумя переменными, очищенной от опосредованного влияния других факторов (переменных) Его значение определяется по формуле:
где Если исследуется связь между несколькими переменными (более двух), то корреляцию в этом случае называют множественной. Степень тесноты множественной связи оценивается множественным коэффициентом корреляции R. Квадрат величины R называют коэффициентом детерминации. Множественный коэффициент корреляции изменяется в пределах Ложные корреляции. На практике существуют также ложные корреляции. Это означает, что если найдены переменные с высоким значением коэффициентов корреляции, то отсюда еще не следует, что между ними действительно существует причинная связь или закономерность. Необходимо быть уверенным, что на исследуемые переменные не влияют другие переменные. Курьезный пример из статистики – найденная статистиками высокая корреляция между числом родившихся младенцев и количеством прилетевших аистов в северных областях Европы. Причина связи лежит в третьей неизвестной влияющей переменной. Второй пример ложных корреляций – ущерб, понесенный от пожара, и количество пожарных, тушивших пожар. Здесь есть третья влияющая переменная – величина пожара. Использование частных корреляций позволяет исключать влияние подобных переменных. Наряду с группировкой и визуализацией данных вычисление корреляций – это стандартный начальный этап всякого исследования, связанного с анализом данных.
|