Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Анализ свойств одноканальной СМО
Анализ свойств одноканальной СМО с однородным потоком заявок будем проводить с использованием представленных выше математических моделей в виде формул (4.1 – 4.3), определяющих зависимости характеристик обслуживания заявок от параметров поступления и обслуживания заявок для установившегося (стационарного) режима работы системы. 1. Среднее время ожидания заявок в очереди минимально при постоянной (детерминированной) длительности обслуживания заявок, когда коэффициент вариации длительности обслуживания ν b = 0, и увеличивается с ростом коэффициента вариации (дисперсии) длительности обслуживания. Заметим, что зависимость среднего времени ожидания от коэффициента вариации ν b носит нелинейный характер. Так, например, при экспоненциально распределенной длительности обслуживания, когда ν b =1, среднее время ожидания заявок увеличивается в 2 раза, а при ν b = 2 – в 5 раз, по сравнению с детерминированным обслуживанием. 2. Среднее время ожидания заявок существенно зависит от нагрузки y (загрузки ρ) системы (рис.4.2). При y ≥ 1 (ρ → 1) время ожидания заявок возрастает неограниченно: w → ∞, т.е. заявки могут ожидать обслуживания сколь угодно долго. Отметим, что увеличение нагрузки может быть обусловлено двумя факторами: увеличением интенсивности поступления заявок в систему или увеличением длительности обслуживания заявок (например, в результате уменьшения скорости работы обслуживающего прибора). 3. Можно показать, что для бесприоритетных дисциплин обслуживания в обратном порядке (ООП) и обслуживания в случайном порядке (ОСП) средние времена ожидания заявок будут такими же, как и при обслуживании в порядке поступления, но дисперсии времени ожидания будут больше. Это обусловлено, в частности для дисциплины ООП, тем, что часть заявок, поступивших последними, будут ожидать незначительное время, в то время как заявки, попавшие в начало очереди, могут ожидать обслуживания достаточно долго, то есть увеличивается разброс значений времени ожидания относительно среднего значения.
|