Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.Для новых пользователей первый месяц бесплатно. Чат-бот для мастеров и специалистов, который упрощает ведение записей: — Сам записывает клиентов и напоминает им о визите; — Персонализирует скидки, чаевые, кешбек и предоплаты; — Увеличивает доходимость и помогает больше зарабатывать; Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.Числовые характеристики случайных величин
3.1. Основные числовые характеристики для дискретных случайных величин определяются по формулам: – математическое ожидание случайной величины Х, которое характеризует среднее значение случайной величины, центр распределения. – дисперсия, определяет рассеивание случайной величины около центра. – среднее квадратичное отклонение. 3.2. По аналогии с дискретным распределением математическое ожидание и дисперсия в случае непрерывной случайной определяется формулами:
3.3. Отметим еще формулу, удобную при вычислении дисперсии: 3.4. Свойства математического ожидания и дисперсии 1. – неслучайная величина. 2. 3. для любых X и Y. для независимых случайных величин X и Y. 4. для независимых случайных величин X и Y. Пример 3.1. Вычислить математическое ожидание и дисперсию случайной величины примера 1.2.
Пример 3.2. Вычислить математическое ожидание и дисперсию для непрерывной случайной величины примера 2.1.
|