![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Реализация интегрирующих цифровых фильтров.
Перед решением общей задачи дискретизации аналогового прототипа рассмотрим предварительно реализацию интегрирующих цифровых фильтров. Уравнение непрерывного аналога имеет вид
Применяя для численного интегрирования метод прямоугольников, получим и тогда
Разностному уравнению соответствует передаточная функция
Применяя вместо формулы прямоугольников формулу трапеций, получим
при этом
Логарифмические частотные характеристики цифрового фильтра (115) представлены на рис.46, откуда видно, что ЛАФЧХ непрерывного и дискретного корректирующих устройств совпадают только в диапазоне низких частот. Отметим, что возможно применение более точных формул численного интегрирования, дающих лучшее приближение к непрерывному звену, Рассмотрим задачу реализации непрерывного корректирующего устройства, заданного своей передаточной функцией
с помощью цифрового фильтра. Один из способов ее решения [5] состоит в замене непрерывного интегратора цифровым с передаточной функцией (114) или (115). При этом передаточную функцию D(p) записывают по отрицательным степеням P, т.е.
Передаточная функция цифрового фильтра находится с помощью перехода
и тогда
Возможно применение других форм
|