Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Уравнения состояния дискретных систем






    Способ математического описания дискретных систем разностными уравнениями является наиболее общим и применяется как для линейных, так и для нелинейных систем. Разностные уравнения позволяют провести полное исследование системы, они хорошо приспособлены для решения задач анализа и синтеза с помощью ЭВМ

     
     

    Вопрос о составлении разностных уравнений импульсной системы

    Рис. 33

    удобно рассмотреть сразу для многомерной САУ. Уравнения для системы с одним входом и одним выходом получатся тогда как частный случай.

    Рассмотрим многомерную синхронную синфазную импульсную систему (рис.33). Импульсные элементы в этой схеме имеют одинаковые частоты квантования и работают синфазно. Пусть непрерывная часть системы описывается уравнением

    (53)

    (54)

    где -мерный вектор переменных состояния; -мерный вектор входных воздействий, -мерный вектор выходных переменных.

    Матрицы A, B, C, D имеют следующие размерности: A-(n´ n) матрица, B-(n´ m) матрица, C-(r´ n) матрица и D-(r´ m) матрица. Графически уравнениям (53), (54) соответствует структурная схема, представленная на рис.34. Здесь и далее двойные стрелки на схеме указывают на то, что связи относятся к векторным величинам.

    Матрица A - основная или собственная матрица системы. Она определяет устойчивость системы, характер ее свободных движений Матрица B - матрица формирования управления. Она определяет передаточные свойства системы и характеристики вынужденного движения. Матрица C определяет связь между выходными переменными и переменными состояния, матрица D устанавливает непосредственную зависимость выходных координат системы от входных переменных,

    Рис. 34

     
     

    Рассмотрим решение дифференциального уравнения (53) при заданных начальных условиях и известных входных воздействиях u(t). Как известно, общее решение неоднородного дифференциального матричного уравнения с постоянными коэффициентами имеет вид

    ,

    где X(t) - произвольная фундаментальная матрица соответствующего однородного дифференциального уравнения. Выбрав в качестве X(t) нормированную фундаментальную матрицу (для стационарной системы она имеет вид ), получим

    . (55)

    Предположим, что в качестве формирующего звена используется экстраполятор нулевого порядка. Тогда в течение каждого из интервалов квантования на вход непрерывной части поступает постоянный сигнал u(t)=const=u[kT]. Полагая известными значения переменных состояния при , найдем их значения при t=(k+1)T. Подставив соответствующие значения в уравнение (55), получим

    . (56)

    Таким образом, получена система разностных уравнений в матричной форме, определяющая значения переменных состояния на k+1 такте через значения вектора состояния и вектора входных воздействий на предыдущем шаге. Векторное уравнение (56) можно представить в виде

    Дополняя его дискретным аналогом уравнения (54), получим окончательную систему разностных уравнений в виде

    (57)

    (58)

    где Ф - собственная матрица импульсной системы, ; H матрица входа,

    ; Е- единичная матрица соответствующей размерности. Матрицы С и D при переходе от уравнений (54) и (58) не изменяются.

    Таким образом, получена система разностных уравнений, описывающая рассматриваемую импульсную систему.

     

    3. Некоторые способы вычисления переходной матрицы.

    Из выражений для матриц Ф и Н, входящих в уравнение (57) легко видеть, что основные сложности при переходе от системы (53), (54) к системе разностных уравнений (57), (58) заключаются в вычислении собственной матрицы , которая является переходной матрицей непрерывной части. Для ее нахождения используют как аналитические, так и численные методы.Наиболее часто аналитические методы связаны с решением однородного дифференциального уравнения

    (59)

    при произвольных начальных условиях . Применяя для решения уравнения преобразование Лапласа, получаем

    ,

    где . Отсюда

    и тогда

    .

    Из последнего соотношения следует, что

    Существуют и другие аналитические методы нахождения матрицы [2]. Однако все аналитические методы отличаются сложностью и трудоемкостью, которые возрастают с ростом размерности вектора состояния системы.

    Численные методы определения матрицы основаны на вычислении суммы матричного ряда

    где - число удерживаемых членов бесконечного ряда.

    Недостаток вычисления матрицы Ф по этому методу - плохая сходимость степенного разложения, которая вместе с учетом конечной разрядности ЭВМ может привести к существенным погрешностям в вычислениях (вплоть до неверного определения знака у элементов матрицы Ф).

    Лучшей сходимостью обладают алгоритмы, основанные на использовании степенных рядов, полученных в результате разложения по полиномам Чебышева [2]. Наконец, элементы матрицы Ф могут быть получены в результате повторного n -кратного численного решения дифференциального уравнения (59). После численного интегрирования в интервале от 0 до Т уравнения (59) для , найденный вектор x(T) при t=T будет представлять собой первый столбец матрицы Ф. Аналогично, решив численно уравнение (59) при , получим второй столбец матрицы Ф, а в результате n-кратного интегрирования матрица Ф будет определена полностью. Таким же способом можно численно вычислить и матрицу Н. Для этого необходимо проинтегрировать m раз уравнение (53), положив x=0 и приравнивая к единице поочередно компоненты вектора входных воздействий u.


    Лекция 13






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.