Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Уравнения состояния дискретных систем
Способ математического описания дискретных систем разностными уравнениями является наиболее общим и применяется как для линейных, так и для нелинейных систем. Разностные уравнения позволяют провести полное исследование системы, они хорошо приспособлены для решения задач анализа и синтеза с помощью ЭВМ Вопрос о составлении разностных уравнений импульсной системы Рис. 33 удобно рассмотреть сразу для многомерной САУ. Уравнения для системы с одним входом и одним выходом получатся тогда как частный случай. Рассмотрим многомерную синхронную синфазную импульсную систему (рис.33). Импульсные элементы в этой схеме имеют одинаковые частоты квантования и работают синфазно. Пусть непрерывная часть системы описывается уравнением (53) (54) где -мерный вектор переменных состояния; -мерный вектор входных воздействий, -мерный вектор выходных переменных. Матрицы A, B, C, D имеют следующие размерности: A-(n´ n) матрица, B-(n´ m) матрица, C-(r´ n) матрица и D-(r´ m) матрица. Графически уравнениям (53), (54) соответствует структурная схема, представленная на рис.34. Здесь и далее двойные стрелки на схеме указывают на то, что связи относятся к векторным величинам. Матрица A - основная или собственная матрица системы. Она определяет устойчивость системы, характер ее свободных движений Матрица B - матрица формирования управления. Она определяет передаточные свойства системы и характеристики вынужденного движения. Матрица C определяет связь между выходными переменными и переменными состояния, матрица D устанавливает непосредственную зависимость выходных координат системы от входных переменных, Рис. 34 Рассмотрим решение дифференциального уравнения (53) при заданных начальных условиях и известных входных воздействиях u(t). Как известно, общее решение неоднородного дифференциального матричного уравнения с постоянными коэффициентами имеет вид , где X(t) - произвольная фундаментальная матрица соответствующего однородного дифференциального уравнения. Выбрав в качестве X(t) нормированную фундаментальную матрицу (для стационарной системы она имеет вид ), получим . (55) Предположим, что в качестве формирующего звена используется экстраполятор нулевого порядка. Тогда в течение каждого из интервалов квантования на вход непрерывной части поступает постоянный сигнал u(t)=const=u[kT]. Полагая известными значения переменных состояния при , найдем их значения при t=(k+1)T. Подставив соответствующие значения в уравнение (55), получим . (56) Таким образом, получена система разностных уравнений в матричной форме, определяющая значения переменных состояния на k+1 такте через значения вектора состояния и вектора входных воздействий на предыдущем шаге. Векторное уравнение (56) можно представить в виде Дополняя его дискретным аналогом уравнения (54), получим окончательную систему разностных уравнений в виде (57) (58) где Ф - собственная матрица импульсной системы, ; H матрица входа, ; Е- единичная матрица соответствующей размерности. Матрицы С и D при переходе от уравнений (54) и (58) не изменяются. Таким образом, получена система разностных уравнений, описывающая рассматриваемую импульсную систему.
3. Некоторые способы вычисления переходной матрицы. Из выражений для матриц Ф и Н, входящих в уравнение (57) легко видеть, что основные сложности при переходе от системы (53), (54) к системе разностных уравнений (57), (58) заключаются в вычислении собственной матрицы , которая является переходной матрицей непрерывной части. Для ее нахождения используют как аналитические, так и численные методы.Наиболее часто аналитические методы связаны с решением однородного дифференциального уравнения (59) при произвольных начальных условиях . Применяя для решения уравнения преобразование Лапласа, получаем , где . Отсюда и тогда . Из последнего соотношения следует, что Существуют и другие аналитические методы нахождения матрицы [2]. Однако все аналитические методы отличаются сложностью и трудоемкостью, которые возрастают с ростом размерности вектора состояния системы. Численные методы определения матрицы основаны на вычислении суммы матричного ряда где - число удерживаемых членов бесконечного ряда. Недостаток вычисления матрицы Ф по этому методу - плохая сходимость степенного разложения, которая вместе с учетом конечной разрядности ЭВМ может привести к существенным погрешностям в вычислениях (вплоть до неверного определения знака у элементов матрицы Ф). Лучшей сходимостью обладают алгоритмы, основанные на использовании степенных рядов, полученных в результате разложения по полиномам Чебышева [2]. Наконец, элементы матрицы Ф могут быть получены в результате повторного n -кратного численного решения дифференциального уравнения (59). После численного интегрирования в интервале от 0 до Т уравнения (59) для , найденный вектор x(T) при t=T будет представлять собой первый столбец матрицы Ф. Аналогично, решив численно уравнение (59) при , получим второй столбец матрицы Ф, а в результате n-кратного интегрирования матрица Ф будет определена полностью. Таким же способом можно численно вычислить и матрицу Н. Для этого необходимо проинтегрировать m раз уравнение (53), положив x=0 и приравнивая к единице поочередно компоненты вектора входных воздействий u. Лекция 13
|