Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Аналог критерия Михайлова.
Частотные критерии устойчивости удобно применять к системам высокого порядка. Одним из распространенных критериев устойчивости непрерывных систем является критерий Михайлова. Для импульсных систем можно сформулировать аналог этого критерия. Пусть характеристическое уравнение замкнутой импульсной системы имеет вид В соответствии с принципом аргумента [3] число корней характеристического многочлена, лежащих внутри единичной окружности, равно числу полных оборотов вектора при обходе точкой z единичной окружности, т.е. . Очевидно, что если m = n, то все корни удовлетворяют соотношению и система устойчива. Наибольшую сложность при использовании этого критерия представляет нахождение отображения единичной окружности на плоскости B. При этом рассматривать многочлен B(z) в функции z неудобно, так как аргумент z меняется сложным образом. Проще перейти к переменной по формуле . При этом движению точки z по единичной окружности соответствует изменение в следующих пределах: Таким образом, рассматривается функция и строится ее годограф в пределах . Так как имеет место соотношение , то годограф при изменении в пределах симметричен относительно оси абсцисс. Отсюда следует, что можно рассматривать лишь полуветвь годографа, соответствующую половине исходного диапазона . При этом приращение аргумента функции также уменьшится вдвое, т.е. ; Примеры годографов, соответствующих устойчивым системам при n =1, 2, 3, показаны на рис.25. Рис.25.
|