Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Анализ устойчивости с помощью критерия Найквиста.






    Анализ устойчивости импульсных систем может быть выполнен также с помощью критерия Найквиста, который основан на использовании частотных характеристик разомкнутой системы. Рассмотрим простейшую схему замкнутой системы, представленную на рис.10. Пусть - частотная характеристика разомкнутой импульсной системы. Приведем формулировку критерия Найквиста без доказательства.

    Пусть характеристическое уравнение разомкнутой импульсной системы имеет l корней вне единичного круга плоскости z. Для того, чтобы была устойчива замкнутая импульсная система, необходимо и достаточно, чтобы годограф при изменении w от 0 до охватывал точку ) на комплексной плоскости W ровно l /2 раз, т.е.

     

    ,

    .

    Пусть разомкнутая система устойчива. Тогда годограф 1 на рис.26 соответствует системе, устойчивой в замкнутом состоянии, а годограф 2 - системе, неустойчивой в замкнутом виде.

     
     

    Рис. 26

    Случай, когда передаточная функция W(z) разомкнутой системы имеет полюса на единичной окружности плоскости z, относится к числу особых. В этом случае необходимо дополнить годограф частотной характеристики разомкнутой системы дугой бесконечного радиуса аналогично тому, как это делалось при исследовании непрерывных систем. Обычно полюсами, лежащими на единичной окружности, оказываются полюса z=1, что соответствует наличию полюсов p=0 (интегрирующих звеньев) в передаточной функции ПНЧ. При этом годограф АФЧХ разомкнутой системы дополняется дугой бесконечного радиуса, охватывающей столько квадрантов, каков порядок полюса z=1.

    Пусть l =0 и разомкнутая система имеет полюс z=1 второго порядка. Годограф АФЧХ, представленный на рис.27а, соответствует системе, неустойчивой в замкнутом состоянии, на рис.27б - системе, устойчивой в замкнутом виде.

     
     

    Рис.27а Рис.27б.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.