Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Псевдочастотные характеристики импульсных систем.






     

    Помимо рассмотренных АФЧХ, для дискретных систем оказывается возможным ввести характеристики, которые по методике построения и по своим свойствам схожи с ЛАФЧХ непрерывных систем. Такие характеристики называются псевдочастотными (ПЧХ).

    Как отмечалось выше, АФЧХ дискретной системы рассматривают в диапазоне частот где - частота квантования. Чтобы использовать привычную методику построения ЛАФЧХ, введем псевдочастоту

    . (41)

     

    Зависимость, связывающая w и l, иллюстрируется рис.19, из которого видно, что изменению частоты w в диапазоне соответствует изменение псевдочастоты l в диапазоне .

     
     

    Рис. 19

    Рассмотрим передаточную функцию дискретной системы . Заменим переменную z на переменную w по формуле

    (42)

    Такое преобразование переменных называется дробно-линейным или билинейным. После замены переменных по формуле (42) передаточная функция преобразуется в передаточную функцию

    .

    Частотные характеристики дискретных систем получают подстановкой в z -передаточную функцию величины . Возникает вопрос, на какую величину следует заменить переменную w в передаточной функции , чтобы получить те же частотные характеристики системы.

    Из зависимости (42) получим

    .

    При , имеем

    .

    Таким образом, частотные характеристики дискретной системы в функции псевдочастоты l могут быть получены заменой в w-передаточной функции переменной w на jl;

    .

    Связь псевдочастоты с частотой задается соотношением (41), причем на малых частотах эти величины практически совпадают. Частотная характеристика в функции псевдочастоты l называется псевдочастотной характеристикой.

    По отношению к переменной z передаточные функции W(z)-это дробно-рациональные выражения. Следовательно, по отноше­нию к переменной w они также будут дробно-рациональными, т.е. ПЧХ есть дробно-рациональная функция jl, причем l изменяется в пределах от 0 до . Таким образом, ПЧХ дискретных систем имеют те же асимптотические свойства, что и АФЧХ непрерывных систем.

    Наряду с АФЧХ могут быть построены логарифмические псевдочастотные характеристики (ЛПЧХ) дискретных систем. Это позволяет применять известные частотные методы анализа и синтеза непрерывных систем и для дискретных систем.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.