Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Алгоритм решения ЗЛП графическим методом.Стр 1 из 9Следующая ⇒
1) Записывают уравнения прямых, соответствующих ограничениям (3.3.4), и строят их на плоскости x1ox3. 2) Определяют области, в которых выполняются ограничения задачи. Для этого выбирают произвольную точку на плоскости х1ох2 и подставляют ее координаты в первую часть одного из неравенств. Если неравенство верно, то искомая полуплоскость находится с той же стороны от прямой, что и точка; в противном случае искомая полуплоскость лежит с противоположной стороны от прямой. Эти действия последовательно выполняются для всех неравенств (3.3.4). 3) Определяют область допустимых решений задачи как область пересечения т полуплоскостей, соответствующих т ограничениям задачи. 4) Определяют направление возрастания (убывания) целевой функции f. Это можно сделать двумя способами. Можно построить вектор-нормаль , его направление показывает направление возрастания функции f, и противоположном направлении функция убывает. Можно просто построить две линии уровня функции f = K 1; f = K 2; (K 1, K 2 – произвольные константы, K 1 K 2), и по их расположению определить направление возрастания (убывания) функции. 5) Определяют граничную точку (точки) области допустимых решений, в которых целевая функция принимает максимальное или минимальное значение. 6) Вычисляют значения найденной точки, решая совместно уравнения, задающие прямые, на пересечении которых находится эта точка, или выявляя уравнение граничной прямой области допустимых решений, с которой совпадает линия уровня целевой функции. Возможны следующие варианты областей допустимых решений (рис. 3.2):
|