Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Выбор структурных схем
В данном разделе предлагается один из вариантов разработки структурной схемы РЛ, а также схем азимутального канала и устройства коррекции неидентичностей приемных трактов этого канала, существенно влияющих на его точность. Структурная схема РЛ. В соответствии с поставленными перед РЛ общими задачами он должен иметь канал обнаружения движущихся целей (ОДЦ) и четыре измерительных канала, служащих для определения азимута, угла места, скорости и дальности цели. Наличие ОДЦ и необходимость измерения скорости требуют применения когерентного зондирующего сигнала. Последний, как указывалось, должен быть импульсным. Упрощенная структурная схема такого РД представлена на рис.2.2. Описание этой схемы дано в § 2.1.
Рис. 3.1
Отличительной особенностью амплитудного суммарно-разностного радиолокатора является использование антенной системы (АС) с амплитудным угловым датчиком (i, с.189...191). Такая АС может состоять из приемно-передающей фазированной антенной решетки ФАР, включающей диаграммообразующую схему, и суммарно-разностного преобразователя СРП, подобного показанному на рис. 2.3. В режиме приема АС формирует суммарный сигнал и два разностных сигнала и , несущих информацию о углах рассогласования в азимутальной и угломестной плоскостях. При пеленгации в одной плоскости диаграмма направленности ФАР имеет вид, показанный на рис. 3.1. Равносигнальное направление РСН, от которого отсчитывается угол рассогласования , проходит через точку пересечения диаграмм и , максимумы которых сдвинуты на угол относительно РСН. Структурная схема азимутального канала. Входящий в состав РЛ измеритель угловых координат должен определять азимут и угол места цели и содержит в связи с этим два идентичных по схеме канала: канал азимута и угломестный канал (УК). Рис. 3.2
Структурная схема азимутального канала показана на рис. 3.2. Предусмотрены два режима работы этого канала: рабочий, когда измеряется угол , и калибровочный, когда корректируются неидентичности трактов обработки сигналов. Последний режим и соответствующая ему схема устройства коррекции УК (выделена на рис. 3.2) будут рассмотрены отдельно. В рабочем режиме коммутатор К соединяет выход углового дискриминатора с устройством управления диаграммой направленности УУДН. Кроме того, отключается генератор пилот-сигнала ГПС. Угловой дискриминатор содержит два ПУТ и фазовый детектор ФД. Сигнал ФД преобразуется в цифровую форму с помощью аналого-цифрового преобразователя АЦП. Устройство мгновенной автоматической регулировки усиления МАРУ служит для нормировки сигналов, с помощью которой уменьшается влияние амплитудных флуктуации входных сигналов на точность измерения угловых координат. В идеальном амплитудном суммарно-разностном радиопеленгаторе (т.е. в радиопеленгаторе с идентичными характеристиками трактов приема и усиления сигналов) суммарный и разностный сигналы синфазны или противофазны (в зависимости от знака угла ). Такой же фазовый сдвиг имеют и сигналы и подаваемые на ФД. Поэтому в отличие от фазового суммарно-разностного радиопеленгатора дополнительный фазовращатель на в разностном канале здесь не требуется. Информация о угле рассогласования содержится в амплитудах принимаемых по диаграммам и сигналов (см. рис. 3.1), которые при идентичных диаграммах, т.е. при , и малых углах имеют вид ; . Разложение функций в степенной ряд дает ; , где - нормированная крутизна ДНА на РСН. При одинаковых коэффициентах усиления ПУТ- и ПУТ- , т.е. при , суммарный и разностный сигналы на входе ФД будут ; . Таким образом в идеальном амплитудном суммарно-разностном моноимпульсном радиопеленгаторе на выходе углового дискриминатора (на выходе ФД) действует сигнал ошибки , (3.1) где - коэффициент передачи фазового детектора, а наличие члена в знаменателе есть следствие работы схемы МАРУ, уменьшающей коэффициенты усиления ПУТ- и ПУТ- пропорционально значению . Сигнал ошибки подается (в данном случае в цифровой форме) на устройство управления диаграммами направленности УУДН, вызывая такой поворот ДНА, при котором стремится к нулю. Как следует из сказанного, после суммарно-разностного преобразования информация о угле содержится в амплитуде и фазе разностного сигнала, а сигнал используется как опорный при определении фазы сигнала . Структурная схема устройства коррекции. В реальных амплитудных суммарно-разностных радиопеленгаторах тракты обработки сигналов обычно неидентичны, что приводит к появлению аппаратурной погрешности при определении угловых координат цели. Наибольшее влияние на аппаратурную погрешность оказывают: - - неидентичность фазовых сдвигов сигналов и на высокой частоте (до СРП); - - неидентичность коэффициентов передачи трактов прохождения этих сигналов до СРП; - - неидентичность фазовых сдвигов суммарного и разностного сигналов в трактах усиления на промежуточной частоте (в ПУТ). Сигнал на выходе углового дискриминатора (3.1) при неидентичных трактах приема и усиления сигналов принимает вид . (3.2) При нахождении цели на равносигнальном направлении РСН, когда , сигнал не равен нулю и ДНА продолжает свое движение до тех пор, пока за счет возникающего приращения амплитуд и не будет достигнуто условие . Как следует из векторной диаграммы, показанной на рис. 3.3, а, когда цель находится на РСН, разностный сигнал на выходе СРП не равен нулю и не ортогонален сигналу . В усилительном тракте к углу между и добавляется фазовый сдвиг и сигналы и оказываются сдвинутыми по фазе на угол υ = (рис. 3.3, б). Так как в общем случае υ , то и сигнал ошибки также не равен нулю. Движение ДНА будет продолжаться, пока не будет выполнено условие , что в рассматриваемой ситуации возможно только при υ . Рис. 3.3
Таким образом при неидентичных трактах радиопеленгатора РСН в установившемся состоянии системы слежения за углом , когда , отличается от направления на цель на некоторый угол , который и является аппаратурной погрешностью радиопеленгатора. Приравнивая нулю значение в соотношении (3.2), можно получить формулу для расчета аппаратурной погрешности амплитудного суммарно-разностного радиопеленгатора: . (3.3) Для уменьшения аппаратурной погрешности можно использовать также коррекцию неидентичностей трактов приема и усиления сигналов. На рис. 3.2 показан наиболее простой вариант устройства коррекции, основанный на введении дополнительного фазового сдвига в сигнал, усиливаемый в ПУТ- . Целесообразность применения этого варианта коррекции обоснована в § 2.1 данного пособия. По принципу действия рассматриваемое устройство коррекцией идентично описанному в § 1.1.
|