Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Основные характеристики звука.
Энергетической характеристикой звуковых колебаний является интенсивность звука - энергия, переносимая звуковой волной через единицу поверхности, перпендикулярную направлению распространения волны, в единицу времени. Интенсивность звука зависит от амплитуды звукового давления, а также от свойств самой среды и от формы волны. Субъективной характеристикой звука, связанной с его интенсивностью, является громкость звука, зависящая от частоты. Наибольшей чувствительностью человеческое ухо обладает в области частот 1-5 кгц. В этой области порог слышимости, т. е. интенсивность самых слабых слышимых звуков, по порядку величины равна 10-12 вм/м2, а соответствующее звуковое давление - 10-5 н/м2. Верхняя по интенсивности граница области воспринимаемых человеческим ухом З. характеризуется порогом болевого ощущения, слабо зависящим от частоты в слышимом диапазоне и равным примерно 1 вм/м2. При распространении звуковой волны в заданном направлении происходит постепенное её затухание, т. е. уменьшение интенсивности и амплитуды. Знание законов затухания практически важно для определения предельной дальности распространения звукового сигнала. Затухание обусловливается рядом факторов, которые проявляются в той или иной степени в зависимости от характеристик самого звука (и в первую очередь, его частоты) и от свойств среды. Все эти факторы можно подразделить на две большие группы. В первую входят факторы, связанные с законами волнового распространения в среде. Так, при распространении в неограниченной среде звука от источника конечных размеров интенсивность его убывает обратно пропорционально квадрату расстояния. Неоднородность свойств среды вызывает рассеяние звуковой волны по различным направлениям, приводящее к ослаблению её в первоначальном направлении, например рассеяние звука на пузырьках в воде, на взволнованной поверхности моря, в турбулентной атмосфере, рассеяние высокочастотного ультразвука в поликристаллических металлах, на дислокациях в кристаллах. На распространение звука в атмосфере и в море влияет распределение температуры и давления, силы и скорости ветра. Эти факторы вызывают искривление звуковых лучей, т. е. рефракцию звука, которая объясняет, в частности, тот факт, что по ветру звук слышен дальше, чем против ветра. Распределение скорости звука с глубиной в океане объясняет наличие т. н. подводного звукового канала, в котором наблюдается сверхдальнее распространение звука, например звук взрыва распространяется в таком канале на расстояние более 5000 км. Вторая группа факторов, определяющих затухание звука, связана с физическими процессами в веществе - необратимым переходом звуковой энергии в другие формы (главным образом в тепло), т.е. с поглощением звука, обусловленным вязкостью и теплопроводностью среды, а также переходом звуковой энергии в энергию внутримолекулярных процессов (молекулярное или релаксационное поглощение). Поглощение З. заметно возрастает с частотой. Поэтому высокочастотный ультразвук и гиперзвук распространяются, как правило, лишь на очень малые расстояния, часто всего на несколько см. В атмосфере, в водной среде и в земной коре дальше всего распространяются инфразвуковые волны, отличающиеся малым поглощением и слабо рассеиваемые. На высоких ультразвуковых и гиперзвуковых частотах в твёрдом теле возникает дополнительное поглощение, обусловленное взаимодействием волны с тепловыми колебаниями кристаллической решётки, с электронами и со световыми волнами. Это взаимодействие при определённых условиях может вызвать и " отрицательное поглощение", т. е. усиление звуковой волны. Распространение звуковых волн характеризуется в первую очередь скоростью звука. В газообразных и жидких средах распространяются продольные волны (направление колебательного движения частиц совпадает с направлением распространения волны), скорость которых определяется сжимаемостью среды и её плотностью. Скорость З. в сухом воздухе при температуре 0°С составляет 330 м/сек, в пресной воде при 17°С - 1430 м/сек. В твёрдых телах, кроме продольных, могут распространяться поперечные волны, с направлением колебаний, перпендикулярным распространению волны, а также поверхностные волны. Для большинства металлов скорость продольных волн лежит в пределах от 4000 м/сек до 7000 м/сек, а поперечных - от 2000 м/сек до 3500 м/сек.
|