Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Асинхронных двигателей






     

    При математическом описании процессов, происходящих в электрических машинах, составляются уравнения равновесия напряжения обмоток статора и ротора и уравнения равновесия моментов на валу машины. Дифференциальные уравнения напряжений, записанные в фазовой системе координат, имеют периодические коэффициенты при неизвестных. Такая система дифференциальных уравнений в общем виде решения не имеет.

    Чтобы получить дифференциальные уравнения равновесия напряжений с постоянными коэффициентами при неизвестных, рекомендуется применить такую ортогональную систему координатных осей, в которой преобразованные контуры обмоток статора и ротора взаимо неподвижны. Например, для синхронных машин преобразованная система координат неподвижна относительно осей d, q, жёстко связанных с ротором. Для асинхронных двигателей кроме системы d, q возможны ортогональные оси X, Y, вращающиеся с произвольной скоростью . γ ax – угол между осью фазы А и координатной осью Х.

    Рис.21

    В данном случае γ ax = 0, т.к. оси Х и А совмещены.

    Значения токов в фазовой системе координат:

    (1)

    Значения токов статора в новой системе координат:

    (2)

    Значения токов для ротора в новой системе координат:

    (3)

    Физический смысл формул (2) и (3) преобразования для асинхронных машин заключается в том, что реальная трёхфазная машина заменяется эквивалентной двухфазной. при этом обмотки статора и ротора двухфазной машины неподвижны относительно друг друга и вращаются в пространстве с произвольной скоростью ω х.

    Уравнение равновесия напряжений обмоток статора в системе относительных единиц:

        (4)   (5)  

    Аналогично уравнения равновесия напряжений обмоток ротора:

        (6)   (7)

    Реальные напряжения, подводимые к обмотке статора в преобразованной системе координат,:

    (8)

    где α 0 – угол, образованный вектором напряжения с фазой, а начальный момент времени;

    ω 0 – синхронная угловая частота вращения.

    Анализируя системы уравнений (4), (6) и (8) видим, что при ω х = ω эти уравнения ничем не отличаются от уравнений синхронной машины в осях d, q. При ω х = ω 0, т.е. в случае, когда преобразованная система координат вращается с синхронной скоростью, приложенные к обмотке статора напряжения (8) являются постоянными величинами, что значительно облегчает решение уравнений.

    Решим системы уравнений (5) и (7) относительно токов .

    (9)

    Подставив (9) в систему уравнений (4) и (6), получим следующую систему дифференциальных уравнений:

    (10)

    где М – электромагнитный момент двигателя.

    Выражение (10а) - уравнение движения ротора.

    где I – момент инерции, кг·м;

    р – число пар полюсов;

    ω 0 – синхронная частота вращения.

     

    Т-образная схема замещения асинхронного двигателя.

    Параметры r1, x1, x'2, r'2 определяются по паспортным данным асинхронных машин.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.