Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Марганец






    Марганец – d – металл VIIБ подгруппы;

    электронная формула валентных электронов

    марганца … 3d5 4s2.

    Марганец – твердый хрупкий неблагородный

    металл; в компактном состоянии серебристо –

    белого цвета, на воздухе принимает серую окраску вследствие образования оксидного слоя.

    В ряду стандартных электродных потенциалов металлов располагается между магнием и цинком и является активным металлом. Однако химическая активность марганца в компактном состоянии сильно снижается за счет пассивирования поверхности оксидной пленкой. При нагревании марганец сгорает на воздухе, образуя оксид состава Mn3O4. Энергично взаимодействует с галогенами, при этом образуются преимущественно солеобразные галогениды марганца (II). При нагревании марганец взаимодействует со всеми остальными неметаллами. Водород хорошо растворим в марганце, но химических соединений не образует.

    В отсутствие пассивирования в мелкодисперсном состоянии марганец при нагревании разлагает воду с выделением водорода. Как активный металл энергично взаимодействует с неокисляющими разбавленными кислотами. При этом образуются только производные марганца (II).

    Mn + 2 HCl ® MnCl2 + H2

    Подобным образом действует на марганец и разбавленная азотная кислота:

    3Mn + 8HNO3 ® 3Mn(NO3)2 + 2NО + 4 H2O

    В соединениях марганец проявляет положительные степени окисления от +2 до +7. Причем наиболее характерны степени окисления +2, +4 и +7 в кислой и нейтральной среде, +6 – в сильнощелочной среде.

    Марганец может служить “модельным элементом” для иллюстрации зависимости кислотно–основных свойств оксидов и гидроксидов от степени окисления.

    В индивидуальном состоянии для марганца могут быть получены следующие оксиды: Mn+2O, Mn+32O3, Mn+4O2, Mn+72O7.

    Все оксиды, кроме высшего Mn2O7, являются твердыми ионно–ковалентными соединениями и с водой не взаимодействуют. Поэтому соответствующие им гидроксиды получают косвенным путем. Например, Mn(OH)2 образуется в виде студнеобразного осадка розового «телесного» цвета действием щелочей на водные растворы солей марганца (II):

    MnCl2 + 2NaOH ® Mn(OH)2 + 2NaCl

    В отличие от других оксидов Mn2O7 является жидкостью черно-зеленого цвета, обладает молекулярной структурой и характеризуется постоянством состава. Высший оксид марганца (VII) – Mn2O7 – энергично взаимодействует с водой, образуя малоустойчивую марганцевую кислоту – HMnO4:

    Mn2O7 + H2O ® 2HMnO4.

    Марганцевая кислота существует лишь в растворах с концентрацией не более 20%; при больших концентрациях она разлагается с выделением кислорода:

    4HMnO4 ® 4MnO2 + 2H2O + 3O2

    Ниже сопоставлены кислотно–основные свойства оксидов и гидроксидов марганца. Формулы соединений, не выделенных в свободном состоянии, приведены в скобках.

    Гидроксиды Mn(OH)2 и Mn(OH)3 характеризуются преимущественно основным характером. В кислой среде они легко образуют аквакомплексы и соответствующие соли Mn(II):

    Mn(OH)2 + 2 HCl ® MnCl2 + 2H2O.

    Соединения Mn (III) в кислой среде неустойчивы и легко диспропорционируют или восстанавливаются до солей Mn(II).

    Темно – бурый осадок Mn(OH)4 можно получить окислением на воздухе гидроксида Mn(OH)2:

    2Mn(OH)2 + O2 + 2H2O ® 2Mn(OH)4

     

    оксиды:

    Mn+2O Mn+32O3 Mn+4O2 (Mn+52O5) (Mn+6O3) Mn+72O7

    гидроксиды:

    Mn(OH)2 Mn(OH)3 Mn(OH)4 (H3MnO4) (H2MnO4) (HMnO4)

    “телесн” корич. бурый голубой зеленый фиолетовый

    основ. слаб. осн. амфотер. слаб. кисл. кисл. сильн. кисл.

    усиление кислотных свойств

     

    усиление основных свойств

     

    Оксид и гидроксид марганца (IV) являются амфотерными соединениями. И основная, и кислотная функции выражены у них слабо: в разбавленных растворах кислот или щелочей они практически не растворяются.

    В концентрированных растворах образуются соли марганца (IV):

    MnO2 + 2H2SO4 = Mn(SO4)2 + 2H2O

    MnO2 + 2NaOH +2H2O = Na2 [Mn(OH)6]

    Соли, отвечающие кислотным свойствам Mn(OH)4, называются манганитами, а гидроксид марганца (IV) в этом случае рассматривается как марганцоватистая кислота.

    Манганиты получают прокаливанием диоксида марганца с оксидами металлов:

    MnO2 + BaO = BaMnO3

    манганит бария

    Манганиты неустойчивы, водой легко гидролизуются, и их трудно выделить в чистом виде. Оксид Mn3O4, известный в природе как минерал гаусманит, может быть получен искусственным путем при взаимодействии Mn(OH)4 как кислоты и Mn(OH)2 как основания:

    2Mn(OH)2 + Mn(OH)4 = Mn2MnO4 + 4H2O

    Таким образом, с химической точки зрения, оксид Mn3O4 является манганитом марганца (II).

    Оксиды и гидроксисоединения марганца в степенях окисления +5 и +6 в индивидуальном состоянии или в растворе не выделены. Однако в сильнощелочной среде косвенным путем могут быть получены соли соответствующих кислот; например:

    t°» комнат.

    2KMnO4 + K2SO3 + 2KOH ® 2K2MnO4 + K2SO4 + H2O

    манганат

    t°< 0°C

    KMnO4 + K2SO3 + 2KOH ® K3MnO4 + K2SO4 + H2O

    изб. гипоманганат

    В нейтральной и кислой средах манганаты и гипоманганаты легко диспропорционируют

    2Na3MnO4 + 2H2O = MnO2 + Na2 MnO4 + 4NaOH

    гипоманганат натрия

    Соединения марганца в высшей степени окисления (+7) – Mn2O7 и HMnO4 проявляют сильнокислотные свойства, по силе сравнимые с соляной кислотой. Они легко реагируют с основаниями, образуя соли – перманганаты:

    Mn2O7 + 2NaOH ® 2NaMnO4 + H2O

    HMnO4 + NaOH ® NaMnO4 + H2O

    Многообразие степеней окисления марганца и различная их устойчивость в кислой, нейтральной и щелочной среде обусловливают разнообразие окислительно- восстановительных свойств соединений марганца.

    В высшей степени окисления (+7) соединения марганца – перманганаты – проявляют только окислительные свойства; в промежуточных степенях окисления (+4, +6) – двойственную окислительно–восстановительную способность. Причем в кислой среде более выражены окислительные свойства окисленных форм, а в щелочной – восстановительные свойства восстановленных форм.

    Диаграмма Латимера для марганца (в кислой среде):

    + 1, 51

    +0, 564 +2, 26 +0, 95 +1, 51 – 1, 18

    MnO4- MnO42- MnO2 Mn3+ Mn2+ Mn

    +1, 70 + 1, 23

           
       


    Диаграмма Латимера для марганца (в щелочной среде):

     

    +0, 564 +0, 60 +0, 15 - 0, 25 – 1, 55

    MnO4- MnO42- MnO2 Mn(OH)3 Mn(OH)2 Mn

    +0, 588 - 0, 05

     
     

     


    В сильнокислой среде наиболее устойчивы соединения марганца (II). Производные с более высокими степенями окисления марганца (+4, +6, +7) проявляют сильные окислительные свойства.

    MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O

    Причем самые сильные окислительные свойства характерны для манганат – иона (j0MnO42-/MnО2= 2, 23).

    Соединения Mn+3 и Mn+6 в кислой и нейтральной среде неустойчивы и самопроизвольно диспропорционируют:

    3 MnO42- + 4H+ ® 2MnO4- + MnO2 + 2H2O

    2 Mn3+ + 2H2O ® Mn2+ + MnO2 + 4H+

    Производные Mn (+2) в кислой среде могут выступать в качестве восстановителей только под воздействием наиболее сильных окислителей, таких как висмутат натрия (NaBiO3) или диоксид свинца (PbO2):

    2MnSO4 + 5PbO2 + 3H2SO4 = 2HMnO4 + 5PbSO4 + 2H2O

    В сильнощелочной среде стабилизируется степень окисления (+6). Поэтому производные Mn+2 и Mn+4 в этих условиях проявляют восстановительные свойства и сильными окислителями превращаются в манганаты:

    3MnSO4+2KClO3+12KOH = 3 K2MnO4 + 2KCl + 3K2SO4 + 6H2O

    2MnO2 + 4KOH + O2 = 2K2MnO4 + 2H2O

    Окислительная способность перманганат – иона MnO4- - в сильнощелочной среде меньше и восстанавливается он до манганат – иона – MnO42-:

    2KMnO4 + Na2SO3 + 2KOH = 2K2MnO4 + Na2SO4 + H2O

    В нейтральной (слабокислой и слабощелочной) среде наиболее стабильна степень окисления +4, поэтому манганаты и перманганаты в этих условиях восстанавливаются до MnO2.

    Наибольшее практическое значение как окислитель имеет перманганат калия. Его окисляющая способность и состав продуктов восстановления определяются кислотностью раствора:

    MnO41- + 8H+ +5e → Mn2+ + 4 H2O (в сильнокислой среде)

    фиол. бесцвет.

    MnO41- + 4H+ +3e → MnO2 + 2 H2O (в нейтральной среде)

    фиол. бурый

    MnO41- +1e → MnO42- (в сильнощелочной среде)

    фиол. зелен.

    Многие соединения марганца термически неустойчивы. Так, при повышенной температуре перманганат калия ступенчато разлагается с отщеплением кислорода:

    2KMnO4 = K2MnO4 + MnO2 + O2

    4KMnO4 = 4MnO2 + 2K2O + 3O2

    Вопросы для подготовки к занятию

    1. Электронные конфигурации атомов, валентные электроны, степени окисления.

    2. Свойства простых веществ – металлов:

    - активность металлов, положение в «ряду стандартных окислительно-восстановительных (электродных) потенциалов металлов»;

    - взаимодействие с кислородом, галогенами, серой, азотом и другими неметаллами;

    - взаимодействие с водой, водными растворами щелочей, водными растворами кислот, окисляющими H+ (HF, HCl, HBr, HI, разбавленной H2SO4, H3PO4, RCOOH и другими);

    - взаимодействие с концентрированной H2SO4, разбавленной и концентрированной HNO3.

    3. Свойства оксидов и гидроксидов металлов VIIБ подгруппы:

    - растворимость, взаимодействие с водой, диссоциация в водном растворе;

    - взаимодействие с кислотами и кислотными оксидами;

    - взаимодействие с основаниями и основными оксидами при сплавлении и растворами щелочей.

    4. Свойства солей металлов VIIБ подгруппы:

    - растворимость в воде, гидролиз;

    - растворимость в кислотах, щелочах.

    5. Комплексные соединения металлов VIIБ подгруппы.

    6. Окислительно-восстановительные свойства соединений металлов VIIБ подгруппы.

    7. Нахождение в природе и получение простых веществ – металлов.

    8. Получение и применение металлов VIIБ подгруппы и их соединений.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.