Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Способы решения систем уравнений






 

1. Способ алгебраического сложения. Если коэффициенты при каком-нибудь неизвестном в обоих уравнениях равны по абсолютной величине, то складывая оба уравнения (или вычитая одно из другого), можно получить уравнение с одним неизвестным. Решая это уравнение, определяют одно неизвестное, а подставляя его в одно из уравнений системы, находят второе неизвестное.

 

Примеры: Решить системы уравнений: 1) .

Здесь коэффициенты при у по абсолютной величине равны между собой, но противоположны по знаку. Для получения уравнения с одним неизвестным уравнения системы почленно складываем:

Полученное значение х = 4 подставляем в какое-нибудь уравнение системы, например в первое, и находим значение у: .

Ответ: х = 4; у = 3.

2) .

Уравняем коэффициенты при х. Для этого умножим первое уравнение на 3, а второе на (– 2) и сложим полученные уравнения.

Ответ: .

2. Способ подстановки. Из любого уравнения системы одну из неизестных выражаем через остальные, а затем подставляем значение этой неизвестной в остальные уравнения. Рассмотрим этот способ на конкретных примерах:

1) Решим систему уравнений . Выразим из первого уравнения одно из неизвестных, например х: и подставим полученное значение х во второе уравнение системы, получим уравнение с одним неизвестным у:

Подставим у = 1 в выражение для х, получим .

Ответ: .

2) . В этом случае удобно выразить у из второго уравнения:

. Полученное значение у подставляем в первое уравнение и получаем уравнение с одним неизвестным х:

Подставим значение х = 5 в выражение для у, получим .

Ответ: .

3) Решим систему уравнений . Из первого уравнения находим . Подставив это значение во второе уравнение, получим уравнение с одним неизвестным у:

Подставим у = 5 в выражение для х, получим

Ответ: .

3. Способ замены. К cистемам двух линейных уравнений с двумя неизвестными можно приводить некоторые нелинейные системы. Это можно осуществлять способом замены.

Пример. Решить систему. .

Перепишем систему в виде: . Заменим неизвестные, положив , получим линейную систему . Из первого уравнения выразим неизвестное . Подставим значение во второе уравнение, получим уравнение с одним неизвестным:

. Подставив значение v в выражение для t, получим: . Из соотношений находим .

Ответ: .

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.