Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Система двух линейных уравнений в пространстве. Общие уравнения прямой, приведение к каноническому виду (пример)
Линия в трехмерном пространстве определяется, вообще говоря, пересечением двух поверхностей, т.е. описывается системой двух уравнений. Прямую в пространстве можно рассматривать как линию пересечения двух плоскостей и, следовательно, описывать системой двух линейных уравнений
при условии, что эти плоскости непараллельны, т.е. их нормальные векторы
1 = { A 1, B 1, C 1} и
2 = { A 2, B 2, C 2} неколлинеарны. Эта система уравнений называется общими уравнениями прямой в пространстве. Прямую линию можно определить как геометрическое место точек, принадлежащих одновременно двум непараллельным плоскостям. Пусть уравнения плоскостей P1 и P2 заданы, тогда определяет прямую линию, и систему (11) называют общим уравнением прямой линии.
Рассмотрим теорию прямой линии в пространстве R3. Очевидно, прямая линия будет полностью определена, если на ней фиксировать точку M0(x0, y0, z0) и вектор , параллельный этой прямой (рис. 2). Точку M0 иногда называют начальной точкой, а вектор - направляющим вектором прямой. Получим наиболее употребительные формы уравнения прямой в пространстве.
где t - некоторое число, называемое параметром. Уравнение (12) называется векторным параметрическим уравнением прямой. Если то можно перейти от уравнения (12) к параметрическим уравнениям прямой в координатном виде: Изменяя значения t, можно получить координаты любой точки, лежащей на прямой. Из уравнений (13) получим: Отсюда Уравнения (14) называются каноническими уравнениями прямой. Пример 1. Уравнение прямой задано в общем виде Необходимо записать уравнение прямой в каноническом виде. Решение. Для записи уравнений (14) нам нужно знать координаты какой-либо точки M0на прямой и координаты какого-либо направляющего вектора прямой. Находим координаты точки M0(x0, y0, z0). Для этого одну из координат задаем произвольно (так, чтобы оставшаяся система двух уравнений с двумя неизвестными имела единственное решение), скажем, z0 = 0. После этого решаем систему относительно x0 и y0 Для определения вектора нам нужны координаты еще одной точки M1 на прямой (рис. 3), тогда в качестве направляющего вектора можно взять вектор Для вычисления координат M1 берем, например z1 = 1, а x1и y1 находим из решения системы Тогда Канонические уравнения прямой имеют вид
|