![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Проекция вектора на ось свойства проекции
Пусть на плоскости или в пространстве заданы ось l с единичным вектором е и произвольный вектор а. Ортогональной проекцией (или просто проекцией) вектора а на ось l называется число, равное произведению длины вектора а на косинус угла между векторами е и а. Проекция вектора а на ось l обозначается символом пр lа или пр е а. Таким образом, по определению пр lа = | a | cos Отложим вектор а от точки О оси l. Если угол между векторами е и а острый (рис. 50, а), то проекция вектора а на ось l равна длине отрезка ОА1 и где А1 — проекция точки А на прямую l. Действительно, Если угол между векторами е и а тупой (рис. 50, б), то проекция вектора а на ось l равна длине отрезка ОА1 и взятой со знаком минус. В самом деле, Если вектор а перпендикулярен оси l, то Рассмотрим два важных свойства проекции вектора на ось. Свойство 1. Для любых векторов а и b справедливо равенство пр l (а + b) = пр lа + пр lb, где l — произвольная ось. Это свойство позволяет заменять проекцию суммы векторов суммой их проекций и наоборот. Свойство 2. Для любого вектора а и любого числа k справедливо равенство пр l k a = k пр l a, где l — произвольная ось. Это свойство позволяет выносить и вносить числовой множитель за знак проекции. Справедливость этих свойств следует из правил действий над векторами, заданными своими координатами. В самом деле, пусть l — произвольная ось с началом отсчета О и единичным вектором е. Введем прямоугольную систему координат следующим образом (рис. 51). Примем точку О за начало координат, а вектор е — за первый базисный вектор (i = e). В качестве других базисных векторов j и k возьмем любые два единичных перпендикулярных друг другу вектора, лежащих в плоскости перпендикулярной оси l. Пусть вектор а = OA > имеет координаты х, у, z. Тогда, по определению проекции, Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение пр lа = | a | cos Но | a | cos Так как абсцисса суммы векторов равна сумме абсцисс слагаемых векторов (§ 11), то, следовательно, и проекция суммы векторов на ось l равна сумме проекций этих векторов на ось l. Точно так же и проекция произведения вектора на число равна произведению этого числа на проекцию вектора, так как при умножении вектора на число его абсцисса умножается на это число.
|