Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Прикладне використання методу множників Лагранжа
Розглянемо економічний зміст множників Лагранжа. Для цього розглянемо задачу нелінійного програмування стосовно визначення оптимального плану виробництва продукції при обмежених ресурсах:
. Головною метою виробництва продукції є отримання найбільшого прибутку від реалізації, тому цільовою функцією Z задачі є прибуток від реалізації продукції обсягом одиниць. Зауважимо, що функція - нелінійна. Для виробництва продукції використовується т видів сировини, обсяги запасів яких обмежені і становлять () одиниць. Запишемо систему нерівностей () у вигляді (). Тобто, якщо - обсяг сировини і -гo виду, що використовується для виробництва всієї продукції, то - залишок цього ресурсу після її виробництва. Якщо , то сировина використана повністю; якщо , то на виробництво продукції використана не вся сировина; якщо , то наявної сировини не вистачає для виробництва продукції. Розглянемо функцію Лагранжа для описуваної задачі:
Очевидно, що , тобто ця похідна показує, як змінюється значення цільової функції залежно від обмежень. Множники Лагранжа є двоїстими змінними задачі про використання ресурсів. Вони можуть бути ціною, за якою на ринку продається чи купується одиниця і -го виду сировини. Якщо і , то можна продати залишки сировини і отримати додатковий прибуток в розмірі . Якщо ж , то можна купити потрібну кількість, витративши грошових одиниць і забезпечити виробництво продукції обсягом . Функцію Лагранжа можна трактувати як загальний прибуток від виробництва, який містить прибуток від реалізації виготовленої продукції f(x) та прибуток від продажу залишків сировини (або витрати на придбання потрібної т кількості сировини) .
|