Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Постановка задачі нелінійного програмування та її характерні особливості
До цього часу ми розглядали задачі лінійного програмування, тобто всі невідомі і в цільову функцію, і в обмеження задачі входили лінійно. Проте взаємозв’язки між економічними показниками досить часто носять нелінійний характер і побудована лінійна модель в такому випадку буде неадекватна реальній дійсності. Тому доцільно досліджувати певні економічні пронеси з допомогою нелінійних моделей, математичним інструментом яких є нелінійне програмування. В загальному випадку задача нелінійного програмування має вигляд: Z = f(x1, x2,..., xn) max(min), (7.1) (7.2) де f(x1, x2,..., xn) та - нелінійні функції. Часто задачу нелінійного програмування намагаються привести до лінійного виду. Для лінійних задач завжди можна знайти оптимальний розв’язок універсальним (симплексним) методом. При цьому немає проблеми з доведенням існування такого розв’язку, адже в результаті розв’язання задачі симплексним методом завжди отримуємо один із варіантів відповіді: 1) знайдено оптимальний розв’язок; 2) задача суперечлива, тобто її розв’язку не існує; 3) цільова функція необмежена, отже, розв’язку також немає. Для задач нелінійного програмування не існує універсального методу розв’язування, тому кожного разу треба доводити існування розв’язку задачі, а також його єдиність. При розв’язуванні нелінійних задач використовують наближені методи, більшість яких дають змогу знаходити локальні оптимуми, а вже знайшовши всі локальні оптимуми, методом порівняння значень цільової функції у кожній з точок локального оптимуму можна знайти глобальний.
|