Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Квазиэлектронные и электронные АТС






По мере развития технологий стали появляться заменители тра­диционных электромеханических коммутационных элементов-элек­тронные и магнитные устройства, в которых отсутствовали подвиж­ные части, а следовательно, практически исчезали механические повреждения, повышалось быстродействие, снижались габариты и масса.

Преимуществами электронных коммутационных элементов были также более высокая технологичность изготовления, большая инте­грация компонентов в одном корпусе, возможность использования печатного монтажа и других достижений электроники того времени: транзисторов, полупроводниковых диодов, магнитных элементов с прямоугольной петлей гистерезиса, твердых интегральных схем и больших интегральных схем (БИС) с высокой степенью интегра­ции. Соответственно, электронные АТС, по сравнению с электроме­ханическими, имели меньшие габариты, требовали меньших площа­дей и кубатуры зданий, меньших затрат на электроэнергию и экс­плуатационное обслуживание, обеспечивали более гибкие возмож­ности построения телефонных сетей.

На первом этапе достижения электроники стали применяться только в управляющих устройствах АТС, что привело к появлению квазиэлектронных АТС, сочетавших в себе электронное управление и электромеханические коммутационные элементы.

Практически в тот же период, на рубеже 1960-х и 1970-х годов, делаются важнейшие шаги в развитии систем коммутации, связан­ные с компьютерной революцией. Компьютеры начинают исполь­зовать для преобразования адресной информации, для линейного искания в коммутационном поле и пр., а управление по записан­ной программе в квазиэлектронных и электронных АТС стало нор­мой. Именно программное управление коммутацией послужило важной предпосылкой зарождения современной теории програм­мирования. Многие достижения в теории программирования яви­лись результатом исследований и разработок ученых и инженеров телекоммуникационных компаний, в частности, Bell System. Пер­вое программное обеспечение коммутации в АТС было реализова­но до изобретения современной операционной системы. Програм­мы управления коммутацией писались на языке ассемблера, а рас­пределением программных сегментов управляли сами разработ­чики программ.

Первая телефонная станция с программным управлением роди­лась в 1950-х годах в исследовательском центре Bell Laboratories. Опытный образецсистемы, названный ESSEX, прошел эксплуатаци­онные испытания в 1960 году в Моррисе, штат Илинойс. Однако путь от опытного образца до промышленного производства оказался го­раздо труднее, чем ожидалось. Разработка требовала прорыва в об­ластях конструирования процессора, языков программирования, компиляции, распределения ресурсов в реальном времени и других усилий, которые впоследствии образовали целые отрасли научной дисциплины, известной теперь как компьютерные науки. Первая ком­мерческая коммутационная станция ESS1 была введена в эксплуа­тацию 30 мая 1965 года в Суккасунне, штат Нью-Джерси (кстати, по соседству с первой бруклинской координатной АТС) и обслуживала 200 абонентов. Позже в число подобных разработок вошли ESS2 и ESS3, а также аналогичные изделия других изготовителей. По мере развития компьютеров детали конструкции этих станций претерпе­вали изменения, и на протяжении 20 лет ESS1 переросла в более современную версию 1А ESS.

Название квазиэлектронные АТС предполагает сохранение про­странственной аналоговой коммутации с применением механиче­ских контактов, но, одновременно, - использование электронных программируемых управляющих устройств. Для построения комму­тационного поля в квазиэлектронных АТС применялись быстродей­ствующие малогабаритные коммутационные элементы с электриче­ским, магнитным или механическим удержанием контактов в рабо­чем состоянии. К коммутационным элементам с электрическим удержанием относились герконовые реле и реле типа ESK. Герконы (герметизированные контакты) представляли собой маленькие стек­лянные баллоны длиной 20-50 мм и диаметром 3-5 мм, заполнен­ные инертным газом и содержащие контактные пружины из магнит­ного материала. Контактные поверхности были покрыты золотом или другим неокисляемым металлом. Применение герконов иллюстри­рует рис.1.8. Язычковое реле, изображенное на рис. 1.8 а, содержит электромагнитную катушку К, внутри которой помещается один или несколько герконов Г, а для создания замкнутого магнитопровода в реле предусматривается ярмо Я из магнитного материала. При прохождении через обмотку язычкового реле управляющего посто­янного тока создается магнитное поле, силовые линии замыкаются через ярмо и контактные пружины, которые при этом притягивают­ся друг к другу и образуют контакт. При выключении тока происхо­дит размыкание контактов, поскольку контактные пружины возвра­щаются в исходное положение благодаря своей упругости.

Рис. 1.8 Принцип действия геркона

Из отдельных герконовых реле создавались многократные гер-коновые соединители (МГС), представлявшие собой основные ком­мутационные блоки. Еще одной разновидностью многократного гер-конового соединителя с магнитным удержанием был соединитель на гезаконах- герметизированных запоминающих контактах (в аме­риканской литературе такие контакты назывались ремридами, а в японской - меморидами).

Точно так же из отдельных ферридов строились многократные ферридовые соединители (МФС): в каждой точке коммутации имел­ся феррид с определенным числом контактов. Схема коммутации разговорного тракта в МФС аналогична схеме коммутации в герко-новом соединителе.

Отечественной разновидностью многократного соединителя с магнитным удержанием явился многократный интегральный соеди­нитель (МИС), который отличался от МФС тем, что магнит (из полу­твердого магнитного материала) в выбираемой точке коммутации работал по принципу безгистерезисного намагничивания. Впрочем, в связистских кругах того времени это обозначение воспринималось исключительно как начало фамилии Леонида Яковлевича Мисуло-вина, организатора и директора Рижского отделения ЦНИИСу соз дателя первой советской квазиэлектронной АТС с записанной про­граммой ИСТОК для сельских телефонных сетей. К отечественным АТС с программным управлением мы еще вернемся в главе 6.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.