Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Глава 7. Векторные и скалярные величины. Сила.
Рис. 51 Векторными величинами, или векторами, называют величины, имеющие и численное значение, и направление. Например, если сказано, что автомобиль движется со скоростью 100 километров в час (то есть дано численное значение скорости), то про его скорость известно не все, потому что неизвестно, куда, в каком направлении он двигается. Примеры - скорость, сила, перемещение (перемещением движущейся точки в данный момент времени называют вектор с началом в точке начала ее движения, и концом в точке ее расположения в этот момент (рис. 51)). Скалярными называют величины, имеющие численное значение, но не имеющие направления. Примеры - количество каких-нибудь предметов, длина, плотность. Векторные величины обозначают в тексте буквами со стрелками (например, или ), а на чертежах - стрелками, при этом длина стрелки равна численному значению вектора, а направление совпадает с направлением вектора (см. рис. 52).
|