Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Формула полной вероятности. Формулы Байеса






    События образуют полную группу событий, если они попарно несовместны, а их сумма является достоверным событием, т.е.: Bi ∙ Bj = Ø при i ≠ j и . Такие события называются гипотезами.

    По теореме сложения вероятностей для полной группы событий справедливо равенство:

    ПРИМЕР: В лесу растут деревья, среди которых 60% берез, 10% елей и 30% сосен. Для замеров деревьев случайным образом выбирается одно из них. Рассмотрим события: В1 – «выбранное дерево береза», В2 – «выбранное дерево ель», В3 – «выбранное дерево сосна». Очевидно, что эти события попарно несовместны (если выбрали березу, то она не может оказаться ни елью, ни сосной), а сумма вероятностей этих событий равна 1. Значит, эти события образуют полную группу событий (являются гипотезами).

     

    Пусть событие А может наступить только при осуществлении одного из событий , образующих полную группу. Тогда вероятность этого события определяется по формуле полной вероятности:

     

    ПРИМЕР: Сохраним условия предыдущего примера. Пусть при замере диаметра деревьев он оказался больше 15 см для 30% берез, 40% елей и 70% сосен. Найдем вероятность события А – «диаметр случайно выбранного дерева больше 15 см». Условные вероятности события А равны: . Тогда с учетом вероятностей гипотез из предыдущего примера по формуле полной вероятности найдем:

     

    В формулу полной вероятности входят вероятности гипотез , которые называются априорными. Если событие А уже наступило, то эти вероятности изменятся и будут условными вероятностями , которые называются апостериор­ными. Эти вероятности могут быть найдены по формулам Байеса:

     

    ПРИМЕР: Пусть в условиях предыдущего примера диаметр случайно выбранного дерева оказался больше 15 см, т.е. событие А наступило. Найти вероятность того, что измеренное дерево – береза.

    По соответствующей формуле Байеса найдем:

     

     

    Рекомендуемая литература по теме 1.1: [1 ÷ 4].

     

    ВОПРОСЫ для самопроверки знаний по теме 1.1:

     

    1. В чем отличие между сочетанием из трех элементов по два и размещением из трех элементов по два?

     

     

     

    2. Различаются ли понятия перестановки из трех элементов и размещения из трех элементов?

     

     

     

    3. Может ли вероятность некоторого события быть равной 1, 05?

     

     

    4. Каким событием будет произведение несовместных событий?

     

     

     

    5. Каким событием будет сумма события и его дополнения ?

     

     

     

    6. Что больше: или ?

     

     

     

     

    7. Чему равна сумма вероятностей всех событий, образующих полную группу?

    ____________________________________________________________

     

    8. Могут ли изменяться вероятности гипотез после наступления события?

     

     

     

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.