Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Решение типовых задач. Пример. В некотором базисе заданы три вектора , а также вектор
Пример. В некотором базисе заданы три вектора , а также вектор . Показать, что векторы (i =1, 2, 3) образуют базис и найти координаты вектора в этом базисе.
Решение. Покажем, что векторы (i =1, 2, 3) – линейно независимы. Пусть линейная комбинация этих векторов обращается в нуль, т.е.

Это же равенство удобно записать в матричной форме:

Задача сводится к решению системы: 
Убеждаемся в том, что определитель системы не равен нулю. Поэтому однородная система имеет только нулевое решение. Следовательно, , а векторы – линейно независимы и в трехмерном пространстве образуют базис. Пусть – координаты вектора в этом базисе. Это означает, что вектор представим в виде
.
Запишем это равенство в координатной форме:

От этого равенства переходим к решению системы уравнений:

Решением этой системы является тройка чисел . Они также являются координатами вектора в новом базисе . Вектор может быть представлен в виде:
или .
Пример: Даны четыре точки 
.
1) Вычислить значение выражения , где , .
Решение. Находим координаты векторов и через координаты начальной и конечной точек: .
Найдем их линейную комбинацию:
.
Вычислим модуль полученного вектора:
.
|