Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.

Уравнения и передаточные функции простейшей замкнутой импульсной системы.






Рассмотрим замкнутую систему с импульсным элементом в це­пи сигнала ошибки и единичной обратной связью. Структурная схема системы приведена на рис.10.

Рис.10

 
 

Запишем уравнение замыкания для дискретных моментов вре­мени t=nT, n=0, 1,...

x[n]=f[n]-y[n]. (26)

Для получения уравнения замкнутой системы воспользуемся урав­нением разомкнутой системы

. (27)

Подставив уравнение (26) в формулу (27), получим

(28)

Для получения передаточной функции замкнутой импульсной системы применим Z -преобразование к обеим частям уравнения (28). С использованием теоремы свертки получим

,

откуда

(29)

Выражение

определяет передаточную функцию замкнутой импульсной системы для управляемой переменной по входному воздействию. Из урав­нения (29) и уравнения замыкания в изображениях

X(z)=F(z)-Y(z)

получим для изображения ошибки

. (30)

Выражение

представляет собой передаточную функцию замкнутой системы по ошибке.

Пусть

Найдем передаточную функцию замкнутой импульсной системы по отношению к сигналу g(t) на выходе звена с передаточной функцией (рис.11). Выражение, связывающее переменные x(t) и g(t) в дискретные моменты времени имеет вид

 
 

где - весовая характеристика звена с передаточной функцией .

Рис.11

Применив Z-преобразование к обеим частям последнего уравнения, получим

,

где

и, с учетом формулы (30), найдем

.

Таким образом, искомая передаточная функция имеет вид


 

18. Определение установившегося значения и ошибки (точности) в дискретной САУ.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.