Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Розглянемо типову теплову задачу






    (39)

    (40)

    (41)

    (42)

    Для того, щоб перетворити ці граничні умови в нульові (після деяких проб і помилок) зупинилися на наступній формі розв’язку:

    , (43)

    де функції A(t) і B(t) вибираються так, щоб “квазістаціонарна” частина розв’язку (43)

    (44)

    задовольняла граничним умовам вихідної задачі. У цьому випадку функція U(x, t) буде задовольняти однорідним граничним умовам. Підставляючи функції S(x, t) у граничні умови

    (45) – (46)

    одержуємо два рівняння, з яких можна визначити А(t) і В(t). У результаті одержуємо

    , (47)

    (48)

    Отже

    (49)

    Якщо підставити цей вираз для T(x, t) у вихідну задачу (39) –(42), ми одержимо нову задачу для невідомої функції U(x, t):

    - (неоднорідне рівняння теплопровідності), (50)

    , (51)

    - (однорідні граничні умови), (52)

    (нова початкова умова з відомою функцією). (53)

    Тепер перед нами нова задача з однорідними граничними умовами (на жаль, розв’язок став неоднорідним). Цю задачу не можна вирішити методом розділення перемінних, але вона легко вирішується розглянутим у попередніх лекціях методом інтегральних перетворень Фур'є.

     

     


    Література, яка рекомендується для вивчення дисципліни

     

    1. Лыков А.В. Теория теплопроводности. – М.: Высшая школа, 1967.

    2. Тихонов А.М., Самарский А.А. Уравнения математической физики. – М.: Наука, 1966.

    3. Беляев Н.М., Рядно А.А. Методы теории теплопроводности. – М.: Высшая школа, 1982.

    4. Резников А.Н., Резников Л.А. Тепловые процессы в технологических системах. – М.: Машиностроение, 1990.

    5. Калиниченко В.И. и др. Численные решения задач теплопроводности. – Харьков: Вища школа, 1993.

    6. Ящерицын П.И. и др. Теория резания. Физические и тепловые процессы в технологических системах. – М.: Высшая школа, 1990.

    7. Попов С.А. и др. Алмазно-абразивная обработка металлов и твердых сплавов. – М.: Машиностроение, 1974.

    8. Лазерная и электронно-лучевая обработка материалов. Справочник //Н.Н.Рыкалин и др. – М.: Машиностроение, 1985.

     

     

    Додаткова література

     

    9. Лыков А.В., Михайлов Ю.А. Теория тепло- и массопереноса. – М.: Госэнергоатомиздат, 1963.

    10. Карслоу Г., Егер Д. Теплопроводность твердых тел. – М.: Наука, 1964.

    11. Бицадзе А.В. Уравнения математической физики. – М.: Наука, 1982.

    12. Маслов В.П., Данилов В.Г., Волосов К.А. Математическое моделирование процессов тепло-массопереноса. – М.: Наука, 1976.

    13. Углов А.А. Математическое моделирование процессов тепло-массопереноса. – М.: Наука, 1976.

    14. Физико-химические процессы обработки материалов концентрированными потоками энергии /С.И.Анисимов и др. – М.: Наука, 1989.


    [1] Например: Справочник по специальным функциям с формулами, графиками и математическими таблицами. /Под ред. М.Абрамовица и И. Стиган- М.: Наука, 1979, 832 с

    [2] В протилежному випадку рівняння М² - k× M = 0 з граничними умовами М(0) = М(l) = 0 має тільки тривіальне рішення М(х) @ 0

    [3] Відзначимо, що функції Tn і T-n відрізняються тільки знаком






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.