![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Точкові оцінки
Приблизне значення оцінюваної величини Оцінку прийнято позначати тією ж самою літерою, що й оцінювану величину, але з хвилястою рискою над нею. Так як оцінка Слід розуміти, що сама оцінка є випадковою величиною. Для повної характеристики необхідно знати закон її розподілу. Деякі поняття про якість оцінки можна отримати, якщо досліджувати її властивості, які визначають здатність оцінки для описання самої випадкової величини. Найбільш важливими з цих властивостей є: а) умотивованість; б) ефективність. 1. Оцінка параметра
Розглянемо декілька визначень оцінок. 2. Дисперсія спроможної оцінки при n®¥ прямує до нуля. Спроможну оцінку можна прийняти за приблизне значення параметра, але при умові, що n велике. 3. Оцінка називається незміщеною, якщо математичне сподівання оцінки дорівнює очікуваному параметру незалежно від числа спостережень, якщо при будь-якому n виконується умова: M[ 4. Якщо рівність (3) виконується при n®¥, то оцінку називають асимптотично незміщеною. 5.Якщо існує ряд незміщених оцінок, то найкращою вважають ту, у якої найменша дисперсія. Незміщена оцінка, яка має найменшу дисперсію, називається ефективною: D[ 5. Якщо умова (4) виконується при n®¥, то оцінка 6. Середнє арифметичне
є спроможною і незміщеною оцінкою математичного сподівання. Якщо випадкова величина Х підлягає нормальному закону, то Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Оцінка дисперсії:
є спроможною й незміщеною, але не ефективною. Якщо випадкова величина Х розподілена згідно з нормальним законом, то оцінка дисперсії є асимптотично ефективною. Якщо оцінка дисперсії спроможна, то й оцінка середнього квадратичного відхилення є спроможною. Однак оскільки співвідношення між
У цьому випадку незміщена оцінка середнього квадратичного відхилення S визначається виразом:
Розглянуті вище оцінки
Значення коофіцієнта Мк Таблиця 1
Інтервальні оцінки Вичерпуючою характеристикою ступеня наближення оцінки Тому в математичній статистиці для характеристики точності оцінки використовується інтервальна оцінка, яка визначається двома числами – межами інтервалу рис.1
[
в границях якого з певною ймовірністю знаходиться істинне значення оцінюваного параметра Рис.1
Ступінь наближення оцінки
P(
Для випадку симетричних щодо
P(½
Визначений таким чином інтервал [
Слід відмітити, що близькість довірчої імовірності до одиниці ще не гарантує (в імовірнісному розумінні) близькість оцінки Вузький довірчий інтервал сам по собі також не характеризує якість оцінки Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе За допомогою виразів (10) і (11) можна знайти довірчий інтервал при заданій довірчий імовірності або визначити довірчу ймовірність при заданому довірчому інтервалі. У більшості прикладних задач метрології визначається довірчий інтервал по заданій довірчій імовірності. Згідно з міждержавним стандартом ГОСТ 8.207-76 (ГСИ. Прямые измерения с многократными повторениями. Методы обработки результатов наблюдений. Основные положения.) довірчу імовірність Pd для визначення довірчих меж похибки результату вимірювання приймають рівною 0.95. У таких випадках, коли вимірювання не можна повторити, крім довірчих границь, які відповідають довірчій імовірності Pd = 0.95, допускається вказувати границі для довірчої імовірності Pd = 0.99. Згідно з міждержавним стандартом ГОСТ 8.381-80 (прим.1) довірчу імовірність при визначенні довірчих границь похибки еталона приймають рівною 0.99.
Висновок: Таким чином вище розглянуті оцінки, властивості оцінок, точкові й інтервальні оцінки, довірчі імовірності, довірчі інтервали, а також зв’язок останніх при вирішенні прикладних задач метрології. 2.5.2. Принцип практичної впевненості Оцінки будь-якого параметра генеральної сукупності внаслідок обмеженого обсягу вибірки є випадковими величинами. Однак на основі цих оцінок повинні надаватись практичні рекомендації. Наприклад, на основі групи спостережень вказують певний результат вимірювання, хоча ймовірність того, що цей результат дорівнює дійсному значенню, завжди менша одиниці. Якщо при цьому оцінюється похибка вимірювання, то й вона може бути знайдена з певним ступенем точності. На практиці вважається, що похибка вимірювання значно менша результату вимірювання. Із теорії ймовірностей видно, що похибка може бути як завгодно великою (хоча імовірність появи такої похибки дуже мала). Протиріччя, яке виникає між теорією і практикою, можна вирішити, якщо, замість неможливих і достовірних подій, використовувати так звані практично достовірні й неможливі події, імовірність появи яких близькі відповідно одиниці й нуля. Наприклад, якщо відомо, що ймовірність появи події А в даному досліді дорівнює 0, 3, то це ще не дає можливості передбачити результат досліду. Але якщо імовірність події А в даному досліді мізерно мала, або навпаки надто близька до одиниці, то це вже дає можливість передбачати результат досліду з достатньою підставою. При цьому керуються принципом практичної впевненості, який формулюється наступним чином. Якщо ймовірність деякої події в даному досліді дуже мала (велика), то можна бути практично впевненим у тому, що при одноразовому виконанні досліду подія А не здійсниться (здійсниться). Іншими словами, події з дуже малими (великими) імовірностями можна вважати практично неможливими (достовірними). Природно виникає питання: наскільки малою повинна бути ймовірність події, щоб можна було вважати неможливою її появу в одному випробуванні. Найбільше значення малої ймовірності, при якій подію можна вважати практично неможливою, називають рівнем значимості. Питання про кількісне значення рівня значимості виходить за рамки математичної теорії, і в кожному конкретному випадку воно вирішується, виходячи з практичних міркувань, у залежності від того, наскільки важливе значення має прийняте рішення й наскільки велика небезпека одиночної помилки. На практиці, як правило, приймають рівень значимості 0, 05; 0, 02; 0, 01 і рідше 0, 1 або 0, 2. Згідно з міждержавним стандартом ГОСТ 8.207-76 при перевірці гіпотези про те, що результати спостережень належать нормальному розподілу, приймають рівні значимості від 0, 1 до 0, 02. Висновок: Т.ч. в даному питанні розглянуті поняття принципу практичної впевненості і рівня значимості і як вони застосовуються на практиці.
2.5.3. Критерії узгодженості
При вивченні закону розподілу випадкової величини на основі даних статистичного матеріалу висувається гіпотеза про теоретичний розподіл. Між статистичним і теоретичним розподілами завжди має місце деяка неузгодженість, яка обумовлена випадковими обставинами, які зв’язані або з поганим узгодженням розподілів, або з обмеженим обсягом вибірки. Основна вимога до теоретичного розподілу полягає в тому, щоб він відображав лише суттєві сторони статистичного матеріалу, а не випадкові, які обумовлені недостатніми експериментальними даними. Ступінь узгодженості між теоретичними й практичними розподілами може бути оцінена за допомогою критерію згоди. Критерієм згоди називають критерій перевірки гіпотези про передбачуваний закон невідомого розподілу. Вибирається деяка величина x, яка характеризує ступінь розбіжності теоретичного та статистичного розподілів. Вона може бути вибрана різними способами. Величина повинна задовольняти деяким загальним вимогам. Необхідно, щоб закон розподілу величини x визначався просто й не залежав від закону статистичного розподілу. Крім того, необхідно, щоб відмінність теоретичного розподілу від статистичного суттєво відображалась на значенні величини. Потім задаються рівнем значимості q. Виходячи із закону розподілу випадкової величини x, визначають таке її значення xq, для якого виконується рівність:
P(x³ xq)=q. (2.5.12)
Знайдене для даної вибірки значення x=xq порівнюють з xq. Якщо x< xq, то вважають, що гіпотеза не суперечить дослідним даним і вона може бути прийнята, а якщо xa³ xq то гіпотезу відхиляють. При вирішенні прикладних задач метрології і зокрема при статистичній обробці результатів спостережень застосовуються наступні критерії згоди: c2 (хі-квадрат), Пірсона, Колмогорова і v2. Критерії c2 і Колмогорова рекомендується застосовувати у випадку, коли число спостережень n> 100, a критерій v2, – коли n> 50. Критерій c2 є найбільш допустимий при великому числі спостережень, так як він забезпечує мінімальну помилку прийняття гіпотези в порівнянні з іншими критеріями. Його слід застосовувати в тих випадках, коли значення параметрів розподілу невідомі. Як випадкова величина x, при використовуванні критерію c2, вибирається величина c2, яка визначається рівністю:
де: n - кількість спостережень (обсяг вибірки); r - кількість розрядів (інтервалів, на які «розбита» вибірка); mj - кількість елементів вибірки, які попали в j-ий розряд; Pj - теоретична ймовірність попадання в j-ий розряд.
Вибір значення x=c2q, яке визначається згідно з умовою k=r–l–1, де l-число невідомих параметрів теоретичного розподілу, які визначаються за даними вибірки. Із знайденими за допомогою таблиці значеннями c2 порівнюють обчислене для даної вибірки за формулою значення c2. Якщо c2a< c2q, то для прийнятого рівня значимості q гіпотеза про згоду теоретичного та статистичного (дослідного) розподілів приймається, якщо c 2a³ c2q – то відхиляється. Складовий критерій, регламентований ГОСТ8.207-76, застосовується для перевірки належності результатів спостережень нормальному розподілу при малому числі спостережень 15< n< 50. При кількості результатів спостережень n£ 15 належність до нормального розподілу не перевіряють.
|