![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Параллельность и перпендикулярность в модели Клейна ⇐ ПредыдущаяСтр 7 из 7
С параллельностью ясно, а вот с ^ сложнее. Пусть АВ^СD, т.е. Ð АОD=Ð АОС=Ð СОВ=Ð ВОD. Рассмотрим этот круг на расширенной евклидовой плоскости (т.е. в проективной модели). Теорема 1. АВ^ОD Û когда они изображаться хордами абсолюта, лежащими на проективных прямых, каждая из которых проходит через полюс другой. Доказательство: Пусть СD^АВ. Ð АОС=Ð АОDÞ $ L - преобразование (проективное!), которое Ð АОС®Ð АОD Þ O = f(O), A = f(A) Þ B=f(B), D=f(C)- три точки прямой неподвижны Þ это гомологияÞ у нее есть центр Е касательная® в касательнуюÞ в неподвижной поляритете совпадает с этим L - преобразованием, через который проходит прямая ДС. Учитывая в поляритетеÞ ч.т.д. Ü Пусть СД проходит через Е. Рассмотрим гомологию с центром в точке Е и осью АВ. Репер АСВО®проективный репер АДВОÞ Эта гомология на круге есть L- преобразование, т.е. перепереводит в себяÞ Ð АОС®Ð АОД.Т.е. Е-помос и значит все прямые делятся в том же отношений. Теперь легко доказать теорему 2. Th2 Две расходящие прямые имеют единственный общий ^. Ясно, т.к. для каждой хорды единственный помос, а через две точки единственная прямая проходит Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
§8 Расстояние на плоскости Лобачевского Мы с вами уже говорили, что две фигуры равны, если $ L- преобразования которые одну фигуру переводят в другую, т.е. L- преобразования – есть движения плоскости Лобачевского. Но мы знаем, что движения должны сохранять какие-то расстояния. Что же понимать под расстоянием здесь? Эти самые L- преобразования сохраняют следующие отношения четырех точек прямой. Наверное, оно должно участвовать в формуле расстояний. df1 под расстоянием на плоскости Лобачевского назовем число d= Теперь мы можем найти расстояние между бесконечно близкими точками, т.е. линейный элемент: ds2. (х, у) (x+dx, y+dy). (2) ds2=c Рассматривая линейный элемент ds2 как линейный элемент поверхности в Евклидовом пространстве, выясним, что это за поверхность. Можно воспользоваться формулой Гаусса, дающей выражения полной кривизны через коэффициенты I квадратичной формы и их производные, получаем k = -c. Th Плоскость Лобачевского (гиперболическая плоскость) локально изометричные поверхности постоянной отрицательной кривизны. Не удивительно, ведь мы же знаем, что и там сумма углов геодезического треугольника < p. (a+b+g)-p=ks. Наиболее известна – псевдосфера. Т.к. отображение плоскости Лобачевского на поверхность отрицательной кривизны есть локальная изометрия, то прямые перейдут в геодезические, и значит геометрия прямых на поверхности отрицательной кривизны (т.е. в модели Бельтракт) есть геометрия геодезическая. Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе Замечание Доказано: что в трехмерном евклидовом пространстве не существует ни какой поверхности, которая своей внутренней геометрией представляла бы всю плоскость Лобачевского. Книга: Мищенко, Фоменко (издание дифференциальной геометрии и топологии. Издательство МГУ, 1960г.) §9 Интерпретация Пуанкаре Рассмотрим открытую полуплоскость. Точками будем называть общие евклидовые точки. L прямыми полуокружности с центрами на границе и открытые лучи ^ границе.
Тогда все аксиомы будут выполняться. Эту модель называют конформной моделью Пуанкаре. Спроектируем круг Клейма х2 + у2 < 1 на полусферу х2 + у2 +z2 = 1, z > 0. Из т. л. о. о. на плоскость Oyz (получим модель Пуанкаре).
в точках
Пусть хорда в плере Клейна задается уравнением ах+ву+с=0, подставляем сюда (1), получаем: При с+а¹ 0 это полуплоскость с центром на оси у при с+а=0 это луч^ оси оу (подставим (1) в формулу линейного элемента т.к. это является мерина §8). Вид линейного элемента А значит, модели изоморфны. Имеет место важная теорема: Th Все модели геометрий Лобачевского одной размерности- изоморфны. Поговорить о вязкости разных интерпретаций
|