Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Метод начальных параметров
Метод начальных параметров основан на дополнении поставленных для краевой задачи граничных условий в начале участка интегрирования некоторыми параметрами, называемыми начальными. Эти параметры выбирают так, чтобы полученная при этом совокупность начальных условий полностью определяла решение поставленной задачи. Пусть дана краевая задача для системы n линейных дифференциальных уравнений первого порядка.
(12)
с граничными условиями на концах интервала [0, l ]
; (13)
где – вектор неизвестных у1(х), y2(х),..., уn(х); А(х) – матрица коэффициентов при неизвестных; – вектор свободных членов; – векторы постоянных интегрирования. Общий интеграл системы уравнений (3.40) запишем в следующем виде:
(14)
где – частное решение матричного уравнения (12), удовлетворяющее всем нулевым начальным условиям ; – частное решение соответствующего уравнению (12) однородного уравнения , удовлетворяющее начальным условиям , где все элементы равны нулю, кроме i -гo, который равен единице; ci – постоянные интегрирования. Подстановкой полученного по (12) решения в условия (13) получают систему n алгебраических уравнений для определения ci. Найденные постоянные подставляют в (14), откуда находят решение исходной краевой задачи.
|