Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Правила объединения или связи
На первом шаге, когда каждый объект представляет собой отдельный кластер, расстояния между этими объектами определяются выбранной мерой. Однако когда связываются вместе несколько объектов, возникает вопрос, как следует определить расстояния между кластерами? Другими словами, необходимо правило объединения или связи для двух кластеров. Здесь имеются различные возможности: например, вы можете связать два кластера вместе, когда любые два объекта в двух кластерах ближе друг к другу, чем соответствующее расстояние связи. Другими словами, вы используете " правило ближайшего соседа" для определения расстояния между кластерами; этот метод называется методом одиночной связи. Это правило строит " волокнистые" кластеры, т.е. кластеры, " сцепленные вместе" только отдельными элементами, случайно оказавшимися ближе остальных друг к другу. Как альтернативу вы можете использовать соседей в кластерах, которые находятся дальше всех остальных пар объектов друг от друга. Этот метод называется метод полной связи. Существует также множество других методов объединения кластеров, подобных тем, что были рассмотрены. Одиночная связь (метод ближайшего соседа). Как было описано выше, в этом методе расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Это правило должно, в известном смысле, нанизывать объекты вместе для формирования кластеров, и результирующие кластеры имеют тенденцию быть представленными длинными " цепочками". Полная связь (метод наиболее удаленных соседей). В этом методе расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. " наиболее удаленными соседями"). Этот метод обычно работает очень хорошо, когда объекты происходят на самом деле из реально различных " рощ". Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является " цепочечным", то этот метод непригоден. Невзвешенное попарное среднее. В этом методе расстояние между двумя различными кластерами вычисляется как среднее расстояние между всеми парами объектов в них. Метод эффективен, когда объекты в действительности формируют различные " рощи", однако он работает одинаково хорошо и в случаях протяженных (" цепочного" типа) кластеров. Отметим, что в своей книге Снит и Сокэл (Sneath, Sokal, 1973) вводят аббревиатуру UPGMA для ссылки на этот метод, как на метод невзвешенного попарного арифметического среднего ‒ unweighted pair-group method using arithmetic averages. Взвешенное попарное среднее. Метод идентичен методу невзвешенного попарного среднего, за исключением того, что при вычислениях размер соответствующих кластеров (т.е. число объектов, содержащихся в них) используется в качестве весового коэффициента. Поэтому предлагаемый метод должен быть использован (скорее даже, чем предыдущий), когда предполагаются неравные размеры кластеров. В книге Снита и Сокэла (Sneath, Sokal, 1973) вводится аббревиатура WPGMA для ссылки на этот метод, как на метод взвешенного попарного арифметического среднего ‒ weighted pair-group method using arithmetic averages. Невзвешенный центроидный метод. В этом методе расстояние между двумя кластерами определяется как расстояние между их центрами тяжести. Снит и Сокэл (Sneath and Sokal (1973)) используют аббревиатуру UPGMC для ссылки на этот метод, как на метод невзвешенного попарного центроидного усреднения ‒ unweighted pair-group method using the centroid average. Взвешенный центроидный метод (медиана). тот метод идентичен предыдущему, за исключением того, что при вычислениях используются веса для учёта разницы между размерами кластеров (т.е. числами объектов в них). Поэтому, если имеются (или подозреваются) значительные отличия в размерах кластеров, этот метод оказывается предпочтительнее предыдущего. Снит и Сокэл (Sneath, Sokal 1973) использовали аббревиатуру WPGMC для ссылок на него, как на метод невзвешенного попарного центроидного усреднения ‒ weighted pair-group method using the centroid average. Метод Варда. Этот метод отличается от всех других методов, поскольку он использует методы дисперсионного анализа для оценки расстояний между кластерами. Метод минимизирует сумму квадратов (SS) для любых двух (гипотетических) кластеров, которые могут быть сформированы на каждом шаге. Подробности можно найти в работе Варда (Ward, 1963). В целом метод представляется очень эффективным, однако он стремится создавать кластеры малого размера.
13.3 Двувходовое объединение
Ранее этот метод обсуждался в терминах " объектов", которые должны быть кластеризованы (см. Объединение (древовидная кластеризация)). Во всех других видах анализа интересующий исследователя вопрос обычно выражается в терминах наблюдений или переменных. Оказывается, что кластеризация, как по наблюдениям, так и по переменным может привести к достаточно интересным результатам. Например, представьте, что медицинский исследователь собирает данные о различных характеристиках (переменные) состояний пациентов (наблюдений), страдающих сердечными заболеваниями. Исследователь может захотеть кластеризовать наблюдения (пациентов) для определения кластеров пациентов со сходными симптомами. В то же самое время исследователь может захотеть кластеризовать переменные для определения кластеров переменных, которые связаны со сходным физическим состоянием. После этого обсуждения, относящегося к тому, кластеризовать наблюдения или переменные, можно задать вопрос, а почему бы не проводить кластеризацию в обоих направлениях? Модуль Кластерный анализ содержит эффективную двувходовую процедуру объединения, позволяющую сделать именно это. Однако двувходовое объединение используется (относительно редко) в обстоятельствах, когда ожидается, что и наблюдения и переменные одновременно вносят вклад в обнаружение осмысленных кластеров.
Так, возвращаясь к предыдущему примеру, можно предположить, что медицинскому исследователю требуется выделить кластеры пациентов, сходных по отношению к определенным кластерам характеристик физического состояния. Трудность с интерпретацией полученных результатов возникает вследствие того, что сходства между различными кластерами могут происходить из (или быть причиной) некоторого различия подмножеств переменных. Поэтому получающиеся кластеры являются по своей природе неоднородными. Возможно это кажется вначале немного туманным; в самом деле, в сравнении с другими описанными методами кластерного анализа (Объединение (древовидная кластеризация) и Метод K средних), двувходовое объединение является, вероятно, наименее часто используемым методом. Однако некоторые исследователи полагают, что он предлагает мощное средство разведочного анализа данных (за более подробной информацией вы можете обратиться к описанию этого метода у Хартигана (Hartigan, 1975)).
13.4 Метод K средних
Этот метод кластеризации существенно отличается от таких агломеративных методов, как Объединение (древовидная кластеризация) и Двувходовое объединение. Предположим, вы уже имеете гипотезы относительно числа кластеров (по наблюдениям или по переменным). Вы можете указать системе образовать ровно три кластера так, чтобы они были настолько различны, насколько это возможно. Это именно тот тип задач, которые решает алгоритм метода K средних. В общем случае метод K средних строит ровно K различных кластеров, расположенных на возможно больших расстояниях друг от друга. Пример В примере с физическим состоянием (в пункте 13.3 Двувходовое объединение), медицинский исследователь может иметь " подозрение" из своего клинического опыта, что его пациенты в основном попадают в три различные категории. Далее он может захотеть узнать, может ли его интуиция быть подтверждена численно, то есть, в самом ли деле кластерный анализK средних даст три кластера пациентов, как ожидалось? Если это так, то средние различных мер физических параметров для каждого кластера будут давать количественный способ представления гипотез исследователя (например, пациенты в кластере 1 имеют высокий параметр 1, меньший параметр 2 и т.д.). Вычисления С вычислительной точки зрения вы можете рассматривать этот метод, как дисперсионный анализ " наоборот". Программа начинает с K случайно выбранных кластеров, а затем изменяет принадлежность объектов к ним, чтобы: (1) ‒ минимизировать изменчивость внутри кластеров, и (2) ‒ максимизировать изменчивость между кластерами. Данный способ аналогичен методу " дисперсионный анализ (ANOVA) наоборот" в том смысле, что критерий значимости в дисперсионном анализе сравнивает межгрупповую изменчивость с внутригрупповой при проверке гипотезы о том, что средние в группах отличаются друг от друга. В кластеризации методом K средних программа перемещает объекты (т.е. наблюдения) из одних групп (кластеров) в другие для того, чтобы получить наиболее значимый результат при проведении дисперсионного анализа (ANOVA). Интерпретация результатов Обычно, когда результаты кластерного анализа методом K средних получены, можно рассчитать средние для каждого кластера по каждому измерению, чтобы оценить, насколько кластеры различаются друг от друга. В идеале вы должны получить сильно различающиеся средние для большинства, если не для всех измерений, используемых в анализе. Значения F -статистики, полученные для каждого измерения, являются другим индикатором того, насколько хорошо соответствующее измерение дискриминирует кластеры.
13.5 Алгоритм нечеткой кластеризации
Алгоритм нечеткой кластеризации называют FCM-алгоритмом (Fuzzy Classifier Means, Fuzzy C-Means). Целью FCM-алгоритма кластеризации является автоматическая классификация множества объектов, которые задаются векторами признаков в пространстве признаков. Другими словами, такой алгоритм определяет кластеры и соответственно классифицирует объекты. Кластеры представляются нечеткими множествами, и, кроме того, границы между кластерами также являются нечеткими. FCM-алгоритм кластеризации предполагает, что объекты принадлежат всем кластерам с определенной ФП. Степень принадлежности определяется расстоянием от объекта до соответствующих кластерных центров. Данный алгоритм итерационно вычисляет центры кластеров и новые степени принадлежности объектов. Для заданного множества К входных векторов и N выделяемых кластеров предполагается, что любой принадлежит любому с принадлежностью , где j – номер кластера, a k – входного вектора. Принимаются во внимание следующие условия нормирования для :
;
Цель алгоритма – минимизация суммы всех взвешенных расстояний :
где q – фиксированный параметр, задаваемый перед итерациями. Для достижения вышеуказанной цели необходимо решить следующую систему уравнений:
, . Совместно с условиями нормирования ид данная система дифференциальных уравнений имеет следующее решение:
(взвешенный центр гравитации) и
Алгоритм нечеткой кластеризации выполняется по шагам. Шаг 1. Инициализация. Выбираются следующие параметры: необходимое количество кластеров N, ; мера расстояний, как Евклидово расстояние; фиксированный параметр q (обычно ~ 1, 5); начальная (на нулевой итерации) матрица принадлежности объектов xk с учетом заданных начальных центров кластеров . Шаг 2. Регулирование позиций центров кластеров. На t -м итерационном шаге при известной матрице вычисляется в соответствии с вышеприведенным решением системы дифференциальных уравнений. Шаг 3. Корректировка значений принадлежности . Учитывая известные , вычисляются , если , впротивном случае: Шаг 4. Остановка алгоритма. Алгоритм нечеткой кластеризации останавливается при выполнении следующего условия:
где – матричная норма (например, Евклидова норма); – заранее задаваемый уровень точности.
Литература:
1. Ильина Н.В. Системный анализ и моделирование процессов в техносфере: Учеб. пособие / Н.В. Ильина, Д.Д. Лапшин, В.И. Федянин. – Ч. 1. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. – 206 с.
|