![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Этап 6. Анализ и интерпретация результатов моделирования
Системное исследование предполагает качественный и количественный анализ модели и полученных результатов. Качественный анализ предназначен для выявления общих закономерностей, связанных с функционированием исследуемого объекта, осуществляется рабочей группой, иногда с привлечением представителей заказчика. Цель количественного анализа достигается решением двух задач: 1) прогнозирование характеристик моделируемого объекта; 2) априорная оценка эффективности различных стратегий его совершенствования. Процедура количественного анализа зависит от вида полученных математических зависимостей. Для сравнительно простых аналитических выражений она может проводиться преимущественно вручную, с использованием инструментария математического анализа и принятия решений. Анализ сложных, громоздких моделей реализуется на ЭВМ с помощью численных и имитационных методов. Проверка адекватности модели. Эта проверка проводится путем установления соответствия между результатами моделирования и какими-либо другими данными, непосредственно относящимися к решаемой задаче. Обычно используют для этого эмпирические данные (результаты натурных экспериментов, статистику), либо подобные результаты, полученные в ходе решения так называемой тестовой задачи с помощью других моделей. Проверка адекватности должна доказать не только правомерность принятых при моделировании гипотез, но и требуемую точность моделирования. Различают качественное и количественное согласие результатов сравнения.Качественное согласие подразумевает совпадение некоторых характерных особенностей в распределении оценочных параметров, например, их знаков, тенденций изменения, наличия экстремальных точек и т.п. Если качественное согласие достигнуто, оценивается совпадение на количественном уровне. При этом для моделей с оценочными функциями оно может оцениваться расхождением в 10-15%, а для используемых в управляющих и контролирующих системах – в 1–2% и ниже. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Причины неадекватности модели могут быть следующие: значения параметров модели не соответствуют области, определяемой принятой системой гипотез; константы и параметры в определяющих соотношениях, использованных в модели, установлены неточно; вся исходная совокупность принятых гипотез неприменима для изучаемого объекта или условий его функционирования. Для устранения этих причин требуется проведение дополнительных исследований как модели, так и объекта-оригинала. Если модель неадекватна, следует изменить значения констант и исходных параметров. Если и при этом положительный результат не достигнут, должны быть изменены принятые гипотезы (например, о характере влияния одного параметра на другой, учет новых факторов и т.п.). Таким образом, последний этап в разработке математической модели исключительно важен, и пренебрежение им может стоить огромных издержек в будущем. Действительно, не всегда правдоподобный результат свидетельствует об адекватности модели, и в других случаях она будет давать качественно неверные решения. Далее показано применение поэтапного моделирования на примере исследования аварийности и травматизма.
8.8 Структура моделирования происшествий в техносфере
1. Содержательная постановка задачи 1.1 Разработать комплекс смысловых и знаковых моделей, позволяющих установить основные закономерности возникновения техногенных происшествий и количественно оценить меру возможности их появления. 1.2. Модели должны: а) выявлять условия появления и предупреждения происшествий; б) вычислять вероятность их появления. 1.3. Исходные данные: параметры производственного объекта Ч (человека), М (машины) и С (среды), проводимых на нем технологических процессов Т, а также статистические данные по состоянию этих компонентов и их аналогов – Q(t). 2. Концептуальная постановка задачи 2.1. Исходные гипотезы и предпосылки относительно моделируемого явления: а) аварийность и травматизм на производстве могут быть описаны в соответствии с канонами теории случайных процессов в сложных системах; б) объектом моделирования должен быть случайный процесс, возникающий на производственном объекте и завершающийся появлением происшествий (аварий или несчастных случаев); в) поток таких происшествий допустимо считать простейшим, т. е. удовлетворяющим условиям стационарности, ординарности и отсутствия последействия; Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе г) каждое происшествие может возникать при выполнении конкретных технологических операций, из-за случайно возникших ошибок персонала, отказов техники и нерасчетных внешних воздействий. 2.2. С учетом вышеизложенного можно сформулировать концептуальную постановку задачи моделирования следующим образом: а) представить аварийность и травматизм в виде процесса просеивания потока заявок w(t) на конкретные технологические операции в выходной поток случайных происшествий с вероятностью Q(t) их появления в момент времени t; б) изобразить данный процесс в виде потоков(графа, интерпретирующего возникновение причинной цепи происшествий из отдельных предпосылок. 3. Проверка и качественный анализ семантической модели 3.1. Проверить обоснованность гипотез относительно природы потоков моделируемых событий и необходимости учета факторов внешней среды: а) возможность представления простейшим потоком также и входного потока требований на проведение технологических операций; б) правомерность допущения о несущественности предпосылок к происшествию, обусловленных неблагоприятными внешними воздействиями; 3.2. Провести качественный анализ потокового графа с целью ответа на следующие вопросы: а) какие производственные процессы можно считать относительно «безопасными»? б) какое технологическое и производственное оборудование следует рассматривать более «безопасным» в эксплуатации. 4. Математическая постановка и выбор метода решения задачи 4.1. Сформулировать задачу моделирования в виде системы алгебраических уравнений и проверить корректность математических соотношений, полученных каким-либо образом: а) с учетом гипотезы о простейшем характере потока требований на выполнение технологических операций использовать свойство его инвариантности после разрежения за счет исключения событий для получения зависимостей
Q(t) = f (Ч, М, С, Т, t) 4.2. Разработать процедуру априорной оценки каждого из пара метров аналитической модели и проверить корректность всех по лученных математических соотношений с применением всех соответствующих правил. Практическая реализация рассмотренного здесь подхода может способствовать совершенствованию безопасности техносферы в целом.
|