![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
При центральном зажигании
Схема распространения фронта горения при зажигании из центра круглой пластины показана на рис. 2.15.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Математическая постановка задачи осесимметричного теплообмена на стадии горения включает: 1) систему трех дифференциальных уравнений нестационарной теплопроводности в цилиндрических координатах
2) граничные условия: на границах «заготовка-оболочка» (z = h 1) и «оболочка - инструмент» (z = h 2 и r = r м) – условия четвертого рода l 1 l 2 на границе «инструмент-окружающая» среда (z = h 3 и r = R м) – условия третьего рода (конвективный теплообмен) l 3 l 3 3) начальные условия Т 1(0, z 1, 0) = T г; Т 2(r, z, 0) = Ts; Т 3(r, z, 0) = Ts; (2.37) 4) уравнение движения фронта горения r г = u г t; (2.38) 5) температуру подвижной границы первого рода (фронт горения) Т 1(r г, z 1, t) = Т г ; (2.39) 6) условие адиабатичности перед фронтом горения
7) условие симметрии температурного поля относительно осей
При расчете температурного поля после сгорания всего объема шихты из системы уравнений (2.34)-(2.40) исключаются уравнения (2.38)-(2.40) и добавляются граничные условия четвертого рода на цилиндрической поверхности заготовки при r = R 1: l 1 В уравнениях (2.34)-(2.42) введены следующие обозначения: Тi – температура тел; Сi, di, li – удельная теплоемкость, гравиметрическая плотность и коэффициент теплопроводности тел системы; hi – характерные размеры тел системы (см. рис. 2.16); i – индекс тела системы: 1 – продукты синтеза, 2 – оболочка, 3 – пуансон; t – время; r г – радиус фронта горения; r м, R м – внутренний и наружный радиусы матрицы; a т – коэффициент теплоотдачи; ТS – температура среды; n – нормаль к граничной поверхности. Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе Поставленная осесимметричная краевая задача нестационарного теплообмена решалась методом конечных элементов при минимизации функционала Дьярмати. имеющего в цилиндрических координатах следующий вид [171]: J =
где Vi – объем тел системы; S 3 – площадь инструмента с конвективным теплообменом. На стадии горения объем V 1 горячих продуктов синтеза, с которыми происходит теплообмен, является функцией времени:
Численное решение осесимметричной задачи осуществлялось по алгоритму численного решения плоской задачи нестационарного теплообмена, который был рассмотрен в разд. 2.2. Зависимость теплофизических свойств продуктов синтеза и песчаной оболочки от температуры не учитывалась, и решалась физически линейная краевая задача. Для дискретизации объекта использовались кольцевые осесимметричные элементы треугольного сечения и линейная аппроксимация температуры внутри каждого элемента [171]. При разбиении на конечные элементы вся область сначала покрывалась прямоугольной сеткой, а затем полученные прямоугольники диагоналями делились на два треугольника. В областях границ контактного теплообмена заготовки и оболочки с высокими градиентами температуры выполнялось сгущение сетки КЭ. Элементы матриц теплопроводности [L], теплоемкости [ C ] и вектора тепловых нагрузок { Fk } вычисляли по известным зависимостям для кольцевых элементов треугольного сечения [171]. Для дискретной модели осесимметричной задачи принимались такие же значения пространственно-временных координат, что и для дискретной модели плоской задачи. При этом общее число узлов составляло Nu = 299; число элементов Ne = 528.
|