Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






ЗАКЛЮЧЕНИЕ. Гладкомышечные клетки, которые находятся в разных органах и тканях могут значительно различаться между собой и являются наиболее разнообразным типом мышц






 

Гладкомышечные клетки, которые находятся в разных органах и тканях могут значительно различаться между собой и являются наиболее разнообразным типом мышц. Кроме деления на мультиунитарные и унитарные, гладкие мышцы различаются по характеру нервных и гуморальных влияний, могут иметь разную электрическую активность и характеристики сокращения.

Даже среди гладких мышц одного типа ткани могут наблюдаться значительные функциональные различия. Например, сократительные ответы васкулярных гладкомышечных клеток стенок двух артериол, которые кровоснабжают разные органы, могут отличаться друг от друга. Различия могут наблюдаться даже между гладкомышечными клетками одной артерии в двух достаточно удаленных точках [26, 122, 336, 372].

Фенотип гладкой мышцы может вариировать в соответствии с изменяющимися условиями. Например, миометрий матки образуют гладкомышечные клетки, которые претерпевают значительную трансформацию во время беременности с целью подготовки матки к родам. Кроме гипертрофии в них увеличивается степень межклеточного взаимодействия благодаря увеличению количества нексусов. Клетки также претерпевают изменения в отношении экспрессии изоформ сократительных белков. При изменении экспрессии ионных каналов и рецепторов усиливается ритмическая электрическая активность, которая координируется распространяющимся потенциалом действия и повышением концентрации ионов Са2+. Несмотря на то, что эти ритмические, скоординированные сокращения возникают спонтанно, они находятся под строгим контролем со стороны гормона окситоцина, уровень которого повышается до, во время и непосредственно после родов.

Значительные различия в функционировании гладких мышц, которые могут наблюдаться даже на протяжении жизни одной клетки, возможно, отражают различия в структуре белков. Показано, что в отличие от скелетной мышцы, гладкомышечные клетки демонстрируют большую вариабельность изоформ сократительных и регуляторных белков. Эта вариабельность является результатом как мультипликации генов, так и альтернативного сплайсинга. Данное разнообразие играет огромную роль в механизмах функционирования гладкой мышцы. Однако тонкие взаимоотношения между структурой и функциями этих изоформ протеинов до конца еще не выяснены.

Механизмы возбуждения и сокращения гладкомышечных клеток по многим параметрам значительно отличаются от механизмов возбуждения и сокращения скелетной мышцы:

- Гладкая мышца кроме потенциала действия может генерировать медленную градуальную деполяризацию и спонтанную активность. Потенциал действия сопровождается фазным сократительным ответом, медленная деполяризация – тоническим сокращением.

- От уровня деполяризации зависит количество открытых кальциевых каналов и, соответственно, уровень внутриклеточного кальция. В свою очередь, количество цитозольного кальция определяет силу сокращения гладкомышечной клетки. Таким образом, чем выше деполяризация мембраны, тем сильнее будет сокращаться гладкомышечная клетка.

- Наряду с электромеханическим в гладкой мышце существует фармакомеханический тип сопряжения процессов возбуждения и сокращения.

- Сократительный ответ гладкой мышцы может возникнуть и без изменения потенциала на мембране.

- На мембрану гладкой мышцы одновременно могут влиять множество факторов, иногда противоположных – например, симпатические и парасимпатические влияния. Таким образом, конечный результат зависит от соотношения интенсивности возбуждающих и тормозных влияний.

- Для инициации сокращения в гладкой мышце существует два основных источника Са2+: 1) из саркоплазматического ретикулума, и 2) из внеклеточной среды (через потенциал-зависимые и рецептор-управляемые ионные каналы).

- В процессе освобождения ионов Са2+ из саркоплазматического ретикулума активное участие принимают вторичные посредники (например, инозитол-1, 4, 5-трифосфат).

- Концентрация ионов Са2+ в саркоплазме гладкомышечной клетки может уменьшаться или увеличиваться в зависимости от градуальных деполяризационных или гиперполяризационных изменений мембранного потенциала, от которых зависит количество открытых кальциевых каналов.

- Наличие в плазматической мембране гладкой мышцы депо-управляемых Са2+ каналов способствует тонкой регуляции внутриклеточной концентрации ионов Са2+.

- В отличие от скелетной мышцы Са2+ в саркоплазме гладкой мышцы связывается с кальмодулином. Комплекс Са2+-кальмодулин активирует киназу легких цепей миозина, которая фосфорилирует миозин и инициирует запуск цикла образования поперечных мостиков.

- В скелетной мышце при возникновении одиночного потенциала действия освобождается количество ионов Са2+, достаточное для вовлечения в процесс всех поперечных мостиков. В гладкой мышце в результате физиологической стимуляции активируется только часть поперечных мостиков, т.е. существует резервное количество мостиков. Это дает возможность постепенного увеличения силы сокращения гладкой мышцы в зависимости от увеличения внутриклеточной концентрации ионов Са2+.

- Сокращение гладкой мышцы, которое определяется как состояние latch state является энергетически экономичным. Это энергосберегающее состояние является чрезвычайно важным для гладкой мышцы, которой приходится поддерживать сокращение в течение длительного времени.

- Скорость гидролиза АТФ миозином гладких мышц относительно скелетных мышц ниже, поэтому гладкая мышца укорачивается более медленно, чем скелетная.

- Процесс расслабления гладкой мышцы инициирует фермент фосфатаза, которая дефосфорилирует легкую цепь миозина. Одновременно с этим происходит ресеквестрация ионов Са2+ в саркоплазматический ретикулум.

Эффективной работе и регуляции сокращений гладкой мышцы способствуют разнообразные факторов. К этим факторам относятся:

- нейротрансмиттеры вегетативных нейронов,

- гормональные влияния,

- спонтанная электрическая активность,

- местные факторы (паракринные вещества, концентрации ионов, осмотическое давление, кислотность),

- растяжение гладкой мышцы.

В гладкомышечных клетках представлено большое количество рецепторов к нейротрансмиттерам и гормонам. Гладкомышечные клетки широко различаются в отношении типов рецепторов, располагающихся на поверхности мембраны. Причем, стимуляция рецепторов может приводить как к сокращению, так и к расслаблению гладкой мышцы. Большое количество биологически активных веществ могут действовать через разнообразные подтипы рецепторов, которые могут функционировать благодаря различным механизмам. Например, в то время как некоторые рецепторы могут представлять из себя лиганд-активируемые ионные каналы, другие действуют через G-белок. Гетеротример G-белка может действовать как непосредственно, так и посредством активации системы внутриклеточных посредников, таких как ц-АМФ, ц-ГМФ, ионы Са2+, инозитол-1, 4, 5-трифосфат и диацилглицерол [356]. Основные отличительные особенности строения и функционирования гладких мышц в сравнении со скелетными и сердечными мышцами даны в таблице 1.

Перечень нейротрансмиттеров, гормонов и местных факторов, регулирующих функции гладких мышц, огромен. Среди основных необходимо отметить адреналин, норадреналин, серотонин, ангиотензин, вазопрессин, нейропептид Y, оксид азота, эндотелии и кислород. Интересно отметить, что одни и те же стимулы в различных гладких мышцах могут приводить к противоположным результатам. Например, при уменьшении напряжения кислорода гладкомышечные клетки артерий большого круга кровообращения расслабляются, в то время как гладкомышечные клетки легочной артерии сокращаются.

И в заключение хотелось бы отметить, что разнообразие, пластичность и уникальные свойства гладкой мышцы дают возможность формировать мышечную стенку внутренних органов, выполняющих самые разные функции, что позволяет своеобразно реагировать на сигналы и тонко регулировать функционирование организма. Расширение наших представлений о механизмах, лежащих в основе функционирования гладких мышц, позволит обнаружить новые пути для разработки лекарственных препаратов и создать более селективные и эффективные вазоактивные, антиспастические и др. средства.


Таблица 1. Основные сравнительные характеристики скелетной, сердечной и гладкой мышцы.

 

Скелетная мышца Сердечная мышца Гладкая мышца
Актин и миозин организованы в саркомеры; характерна поперечная исчерченность. Актин и миозин организованы в саркомеры; характерна поперечная исчерченность. Нет поперечной исчерченности; актина больше, чем миозина.  
Хорошо развит саркоплазматический ретикулум и поперечные трубочки.   Умеренно развит саркоплазматический ретикулум и поперечные трубочки. Слабо развит саркоплазматический ретикулум, отсутствуют поперечные трубочки
Содержат тропонин в тонких филаментах   Содержат тропонин в тонких филаментах Содержат кальмодулин, который связывается с ионами Са2+ и активирует киназу легких цепей миозина.
Величина мембранного потенциала покоя составляет -80 -90 мВ Величина мембранного потенциала покоя составляет -70 мВ для атипичных и -90 мВ для рабочих кардиомиоцитов Величина мембранного потенциала покоя составляет -50 -60 мВ
Амплитуда потенциала действия равна около 120 мВ Амплитуда потенциала действия равна около 120 мВ   Амплитуда потенциала действия равна около 70 мВ
Длительность потенциала действия составляет 1-2 мс Длительность потенциала действия составляет 200-400 мс Длительность потенциала действия составляет 10-300 мс
Са2+ освобождается в цитоплазму из саркоплазматического ретикулума (СПР) Са2+ попадает в цитоплазму из саркоплазматического ретикулума и из внеклеточной жидкости Са2+ попадает в цитоплазму из внеклеточной жидкости и из СПР
Электро-механическое сопряжение процессов сокращения и расслабления Электро-механическое сопряжение процессов сокращения и расслабления Электро-механическое и фармако-механическое сопряжение процессов сокращения и расслабления
Мостики между актином и миозином разрушаются при гидролизе АТФ (АТФ-азная активность комплекса актин-миозин) Мостики между актином и миозином разрушаются при гидролизе АТФ (АТФ-азная активность комплекса актин-миозин) Дефосфорилирование миозина фосфатазой легких цепей миозина.
Не обладают пластичностью. Не обладают пластичностью. Обладают пластичностью – способностью находиться в расслабленном состоянии при умеренном растяжении.
В основе ПД лежит увеличение проницаемости для ионов Na В основе ПД лежит увеличение проницаемости для ионов Са2+ и Na     В основе ПД лежит увеличение проницаемости для ионов Са2+
Ионы Са2+ удаляются в саркоплазматический ретикулум Ионы Са2+ удаляются в саркоплазматический ретикулум (Са-насос) и выводятся наружу (Na-Ca обмен). Ионы Са2+ удаляются в СПР (Са-насос) и выводятся наружу (Na-Ca обмен, Са-насос).
Не обладают спонтанной электрической активностью (автоматией) Автоматия характерна для пейсмекерных клеток проводящей системы сердца. Для унитарных гладкомышечных клеток характерна автоматия.  
Характерна высокая частота импульсации для возникновения тетануса (больше 15 Гц) Тетануса нет Характеризуется редкой частотой возникновения тетануса (меньше 1 Гц).  
Интенсивное потребление энергии АТФ Интенсивное потребление энергии АТФ Энергосберегающий механизм сокращения (потребность в АТФ в 500 раз меньше, чем в скелетной мышце).
Не может сокращаться без нервной стимуляции, денервация приводит к мышечной атрофии Может сокращаться без нервной стимуляции, потенциал действия генерируется в пейсмекерных клетках.     Поддерживает тоническое сокращение в отсутствие нервной стимуляции; после денервации возникает гипер- чувствительность
Иннервация только возбуждающая (соматическая нервная система) Иннервация может быть как возбуждающей, так и тормозной (симпатическая и парасимпатическая нервная система) Иннервация может быть как возбуждающей, так и тормозной (симпатическая и парасимпатическая нервная система)
Мышечные волокна стимулируются не зависимо друг от друга; отсутствуют нексусы. Имеются нексусы во вставочных дисках. Для унитарного типа мышц характерно наличие большого количества нексусов.
Окислительный, гликолитический и окислительно-гликолитический пути образования АТФ Окислительный путь образования АТФ Окислительный путь образования АТФ

 


СПИСОК ЛИТЕРАТУРЫ

 

1. Воротников А.В., Крымский М.А., Ширинский В.П. Внутриклеточная сигнализация и фосфорилирование белков при сокращении гладких мышц. Биохимия. 2002. 67: 1587-1610.

2. Воротников А.В., Крымский М.А., Хапчаев А.Ю., Серебряная Д.В. Сигнальные механизмы регуляции сократительной активности гладких мышц. Рос.физиол.журн.им.И.М.Сеченова. 2004.Т.90.№6.С.705-718.

3. Гусев Н.Б. Молекулярные механизмы мышечного сокращения. Соросовский образовательный журнал, 2000, т.6, №8, С.24-32.

4. Крстич Радивой В. Иллюстрированная энциклопедия по гистологии человека. – Спб.: СОТИС, 2001.- 536., 1576ил.

5. Телина Э.Н., Хамитов Х.С., Ахмедзянов Р.Х. Альфа-адренергическая чувствительность гладкой мышцы после десимпатизации. Физиол.ж.СССР, -1988.- т.74, № 9., - с.1287-1293.

6. Телина Э.Н., Киршин С.В., Низамов Р.С., Ахмедзянов Р.Х., Хамитов Х.С. Регуляция постсинаптических альфа-1 адренорецепторов гладкой мышцы. Нейрофизиология. – 1989. – т.21, № 6. – с.735-741.

7. Хабибуллина Н.К., Шакирзянова А.В., Скоринкин А.И., Авзалов Р.А., Гиниатуллин Р.А. Модулирующее действие серотонина на нервно-мышечную передачу. Бюлл.экспер.биол.и мед., 2002, т.134, №7, с.12-15.

8. Ширинский В.П. Молекулярные механизмы регуляции сократительного аппарата гладких мышц. Росс.физиол.ж.им.И.М.Сеченова, 1999, т.8, №6, с.798-812.

9. Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ, Wein AJ. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006 Jul; 148(5): 565-78

10. Akar F, Jiang G, Paul RJ, O'Neill WC. Contractile regulation of the Na(+)-K(+)-2Cl(-) cotransporter in vascular smooth muscle. Am J Physiol Cell Physiol. 2001 Aug; 281(2): C579-84.

11. Akar F, Skinner E, Klein JD, Jena M, Paul RJ, O'Neill WC. Vasoconstrictors and nitrovasodilators reciprocally regulate the Na+-K+-2Cl- cotransporter in rat aorta. Am J Physiol. 1999 Jun; 276(6 Pt 1): C1383-90.

12. Alahyan M, Webb MR, Marston SB, El-Mezgueldi M. The mechanism of smooth muscle caldesmon-tropomyosin inhibition of the elementary steps of the actomyosin ATPase. J Biol Chem. 2006 Jul 14; 281(28): 19433-48.

13. Amobi NI, Sugden D, Smith IC. Pharmacomechanical coupling in rat vas deferens: effects of agents that modulate intracellular release of calcium and protein kinase C activation. Life Sci. 1999; 65(2): 145-56

14. Andersson KE, Hedlund P, Alm P. Sympathetic pathways and adrenergic innervation of the penis. Int J Impot Res. 2000 Mar; 12 Suppl 1: S5-12.

15. Anfinogenova YJ, Baskakov MB, Kovalev IV, Kilin AA, Dulin NO, Orlov SN. Cell-volume-dependent vascular smooth muscle contraction: role of Na+, K+, 2Cl- cotransport, intracellular Cl- and L-type Ca2+ channels. Pflugers Arch. 2004 Oct; 449(1): 42-55.

16. Anwer K, Oberti C, Perez GJ, Perez-Reyes N, McDougall JK, Monga M, Sanborn BM, Stefani E, Toro L. Calcium-activated K+ channels as modulators of human myometrial contractile activity. Am J Physiol. 1993 Oct; 265(4 Pt 1): C976-85.

17. Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1994 Aug 2; 91(16): 7583-7.

18. Arner, A, and Pfitzer G. Regulation of cross-bridge cycling by Ca2+ in smooth muscle. Rev Physiol Biochem Pharmacol 134: 63-146, 1999

19. Arthur P, Taggart MJ, Mitchell BF. Oxytocin and parturition: a role for increased myometrial calcium and calcium sensitization? Front Biosci. 2007 Jan 1; 12: 619-33.

20. Bagby R. M. Organization of contractile/cytoskeletal elements. In: Biochemistry of smooth muscle. Ed. N. L. Stephens. Boca Raton, FL. CRC Press. 4—84. 1983.

21. Bai Y, Sanderson MJ. Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IP3 receptor. Respir Res. 2006 Feb 23; 7: 34.

22. Balezina OP. Role of intracellular calcium channels of nerve terminals in the regulation of mediator secretion Usp Fiziol Nauk. 2002 Jul-Sep; 33(3): 38-56.

23. Barden JA, Cottee LJ, Bennett MR. Vesicle-associated proteins and P2X receptor clusters at single sympathetic varicosities in mouse vas deferens. J Neurocytol. 1999 Jun; 28(6): 469-80.

24. Barnes PJ. Histamine and serotonin. Pulm Pharmacol Ther. 2001; 14(5): 329-39

25. Barrett LK, Singer M, Clapp LH. Vasopressin: mechanisms of action on the vasculature in health and in septic shock. Crit Care Med. 2007 Jan; 35(1): 33-40.

26. Bell DR, Webb RC, Bohr DF. Functional bases for individualities among vascular smooth muscles. J Cardiovasc Pharmacol. 1985; 7 Suppl 3: S1-11.

27. Bennett MR, Farnell L, Gibson WG. A quantitative description of the contraction of blood vessels following the release of noradrenaline from sympathetic varicosities. J Theor Biol. 2005 May 7; 234(1): 107-22.

28. Bennett MR. Non-adrenergic non-cholinergic (NANC) transmission to smooth muscle: 35 years on. Prog Neurobiol. 1997 Jun; 52(3): 159-95.

29. Burnstock G. Purinergic signaling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol. 2002 Mar 1; 22(3): 364-73.

30. Berridge, M. J. Elementary and global aspects of calcium signalling. J. Physiol. (Lond.) 499: 290–306, 1997.

31. Bers DM, Pogwizd SM, Schlotthauer K. Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure. Basic Res Cardiol. 2002; 97 Suppl 1: I36-42

32. Bers DM. Cardiac excitation-contraction coupling. Nature 2000, 415: 198-205.

33. Bialecki RA, Stinson-Fisher C. KCa channel antagonists reduce NO donor-mediated relaxation of vascular and tracheal smooth muscle. Am J Physiol. 1995 Jan; 268(1 Pt 1): L152-9.

34. Bolton TB. Calcium events in smooth muscles and their interstitial cells; physiological roles of sparks. J Physiol. 2006 Jan 1; 570(Pt 1): 5-11.

35. Bolton TB. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul; 59(3): 606-718.

36. Bolz SS, Pieperhoff S, De Wit C, Pohl U. Intact endothelial and smooth muscle function in small resistance arteries after 48 h in vessel culture. Am J Physiol Heart Circ Physiol. 2000 Sep; 279(3): H1434-9.

37. Bond M, Somlyo AV. Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol. 1982 Nov; 95(2 Pt 1): 403-13.

38. Borovikov YS, Kulikova N, Pronina OE, Khaimina SS, Wrzosek A, Dabrowska R. Caldesmon freezes the structure of actin filaments during the actomyosin ATPase cycle. Biochim Biophys Acta. 2006 Jun; 1764(6): 1054-62.

39. Bouallegue A, Daou GB, Srivastava AK. Endothelin-1-induced signaling pathways in vascular smooth muscle cells. Curr Vasc Pharmacol. 2007 Jan; 5(1): 45-52.

40. Bourreau JP. Cross talk between plasma membrane and sarcoplasmic reticulum in canine airway smooth muscle. Biol Signals. 1993 Sep-Oct; 2(5): 272-83.

41. Bozler E Smooth muscle physiology, past and future. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15; 265(867): 3-6.

42. Burdyga TV, Wray S. On the mechanisms whereby temperature affects excitation-contraction coupling in smooth muscle. J Gen Physiol. 2002 Jan; 119(1): 93-104.

43. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002 Aug; 23(8): 374-80

44. Busse R, Fleming I. Vascular endothelium and blood flow. Handb Exp Pharmacol. 2006; (176 Pt 2): 43-78.

45. Butler TM, Siegman MJ. Control of cross-bridge cycling by myosin light chain phosphorylation in mammalian smooth muscle. Acta Physiol Scand. 1998 Dec; 164(4): 389-400.

46. Canning BJ, Fischer A. Neural regulation of airway smooth muscle tone. Respir Physiol. 2001 Mar; 125(1-2): 113-27.

47. Cao YX, Zheng JP, He JY, Li J, Xu CB, Edvinsson L. Induces vasodilatation of rat mesenteric artery in vitro mainly by inhibiting receptor-mediated Ca(2+)-influx and Ca(2+)-release. Arch Pharm Res. 2005 Jun; 28(6): 709-15.

48. Carl A, Lee HK, Sanders KM. Regulation of ion channels in smooth muscles by calcium. Am J Physiol. 1996 Jul; 271(1 Pt 1): C9-34.

49. Carmichael JD, Winder SJ, Walsh MP, Kargacin GJ. Calponin and smooth muscle regulation. Can J Physiol Pharmacol. 1994 Nov; 72(11): 1415-9.

50. Carpenter CL. Actin cytoskeleton and cell signaling. Crit Care Med. 2000 Apr; 28(4 Suppl): N94-9.

51. Carrier, G. O., L. C. Fuchs, A. P. Winecoff, A. D. Giulumian, and R. E. White. Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca-activated K 1 channels. Am. J. Physiol. Heart Circ. Physiol. 273: H76–H84, 1997.

52. Caulfield MP Muscarinic receptors--characterization, coupling and function. Pharmacol Ther. 1993 Jun; 58(3): 319-79.

53. Chang WJ, Ying YS, Rothberg KG, Hooper NM, Turner AJ, Gambliel HA, De Gunzburg J, Mumby SM, Gilman AG, Anderson RG. Purification and characterization of smooth muscle cell caveolae. J Cell Biol. 1994 Jul; 126(1): 127-38.

54. Chanson M, Kotsias BA, Peracchia C, O'Grady SM. Interactions of connexins with other membrane channels and transporters. Prog Biophys Mol Biol. 2007 May-Jun; 94(1-2): 233-44

55. Chen H, Tang ZY, Yang JX, Wang XM, Dai SF, Lin Y. Effects of caldesmon, calponin, and tropomyosin on the Mg2+-ATPase activities of smooth muscle myosin. Chin Med Sci J. 2004 Dec; 19(4): 286-9.

56. Chen XL, Rembold CM. Phenylephrine contracts rat tail artery by one electromechanical and three pharmacomechanical mechanisms. Am J Physiol. 1995 Jan; 268(1 Pt 2): H74-81.

57. Chipperfield AR, Harper AA. Chloride in smooth muscle. Prog Biophys Mol Biol. 2000; 74(3-5): 175-221.

58. Chitaley K, Weber DS, and Webb RC. RhoA/Rho-kinase, vascular changes and hypertension. Curr Hypertension Rep 3: 139-144, 2001.

59. Chou RG, Stromer MH, Robson RM, Huiatt TW. Substructure of cytoplasmic dense bodies and changes in distribution of desmin and alpha-actinin in developing smooth muscle cells. Cell Motil Cytoskeleton. 1994; 29(3): 204-14.

60. Cipolla MJ, Gokina NI, and Osol G. Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior. FASEB J 16: 72-76, 2002

61. Civantos Calzada B, Aleixandre de Artiñ ano A Alpha-adrenoceptor subtypes. Pharmacol Res. 2001 Sep; 44(3): 195-208

62. Coburn RF, Baron CB. Coupling mechanisms in airway smooth muscle. Am J Physiol. 1990 Apr; 258(4 Pt 1): L119-33.

63. Cong M. C, Fugbang A., Alessi D. R., Kobayashi S., Cohen P., Somlyo A. V.. Somlyo A. P. Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium J. Biol. Chem. 267: 21 492—21 498. 1992.

64. Contreras F, de la Parte MA, Cabrera J, Ospino N, Israili ZH, Velasco M. Role of angiotensin II AT1 receptor blockers in the treatment of arterial hypertension. Am J Ther. 2003 Nov-Dec; 10(6): 401-8.

65. Cooke P. A filamentous cytoskeleton in vertebrate smooth muscle fibers. J Cell Biol. 1976 Mar; 68(3): 539-56.

66. Cooke PH, Kargacin G, Craig R, Fogarty K, Fay FS. Molecular structure and organization of filaments in single, skinned smooth muscle cells. Prog Clin Biol Res. 1987; 245: 1-25.

67. Cox HM, Rudolph A, Gschmeissner S. Ultrastructural co-localization of neuropeptide Y and vasoactive intestinal polypeptide in neurosecretory vesicles of submucous neurons in the rat jejunum. Neuroscience. 1994 Mar; 59(2): 469-76.

68. Cross R. A., Hodge T. P.. Kendrick-Jones J. Self-assembly pathway of nonsarcomeric myosin II. J. Cell Sci. 14: 17—21. 1991.

69. Daniel EE, El-Yazbi A, Cho WJ. Caveolae and calcium handling, a review and a hypothesis. J Cell Mol Med. 2006 Apr-Jun; 10(2): 529-44.

70. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999 Apr; 79(2): 387-423.

71. Dey RD, Mayer B, Said SI. Colocalization of vasoactive intestinal peptide and nitric oxide synthase in neurons of the ferret trachea. Neuroscience. 1993 Jun; 54(4): 839-43.

72. Dilley RJ, McGeachie JK, Prendergast FJ. A review of the proliferative behaviour, morphology and phenotypes of vascular smooth muscle. Atherosclerosis. 1987 Feb; 63(2-3): 99-107.

73. Dillon PF, Aksoy MO, Driska SP, and Murphy RA. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211: 495-497, 1981

74. Dillon PF, Murphy RA. High force development and crossbridge attachment in smooth muscle from swine carotid arteries. Circ Res. 1982 Jun; 50(6): 799-804.

75. Dixon JS, Jen PY, Gosling JA. Structure and autonomic innervation of the human vas deferens: a review. Microsc Res Tech. 1998 Sep 15; 42(6): 423-32.

76. Dong YL, Vegiraju S, Chauhan M, Gangula PR, Hankins GD, Goodrum L, Yallampalli C. Involvement of calcitonin gene-related peptide in control of human fetoplacental vascular tone. Am J Physiol Heart Circ Physiol. 2004 Jan; 286(1): H230-9.

77. Donoso MV, Delpiano AM, Huidobro-Toro JP. Modulator role of neuropeptide Y in human vascular sympathetic neuroeffector junctions. EXS. 2006; (95): 65-76.

78. Dora KA. Cell-cell communication in the vessel wall. Vasc Med. 2001; 6(1): 43-50.

79. Draeger A, Amos WB, Ikebe M, Small JV. The cytoskeletal and contractile apparatus of smooth muscle: contraction bands and segmentation of the contractile elements. J Cell Biol. 1990 Dec; 111(6 Pt 1): 2463-73.

80. Drewett JG, Fendly BM, Garbers DL, Lowe DG. Natriuretic peptide receptor-B (guanylyl cyclase-B) mediates C-type natriuretic peptide relaxation of precontracted rat aorta.J Biol Chem. 1995 Mar 3; 270(9): 4668-74.

81. Ehlert FJ. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci. 2003 Dec 5; 74(2-3): 355-66.

82. Elliott JM, Flanigan TP, Newberry NR, Zetterstrom T, Leslie RA. 5-HT receptor sub-types: aspects of their regulation and function. Neurochem Int. 1994 Dec; 25(6): 537-43

83. Ellis A, Triggle CR. Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol. 2003 Nov; 81(11): 1013-28.

84. Eppel GA, Ventura S, Evans RG. Regional vascular responses to ATP and ATP analogues in the rabbit kidney in vivo: roles for adenosine receptors and prostanoids. Br J Pharmacol. 2006 Nov; 149(5): 523-31.

85. Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol. 2000 Aug; 279(2): C529-39.

86. Fay FS, Fujiwara K, Rees DD, Fogarty KE. Distribution of alpha-actinin in single isolated smooth muscle cells. J Cell Biol. 1983 Mar; 96(3): 783-95.

87. Feletou M and Vanhoutte PM. Endothelium-dependent hyperpolarization of vascular smooth muscle cells. Acta Pharmacol Sin 21: 1-18, 2000.

88. Fellner SK, Arendshorst WJ. Angiotensin II Ca2+ signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways. Am J Physiol Renal Physiol. 2005 Apr; 288(4): F785-91.

89. Fernandes LB. Phosphodiesterase inhibitors and endothelin as modulators of respiratory neurotransmission. Clin Exp Pharmacol Physiol. 1996 Oct-Nov; 23(10-11): 980-2.

90. Fetalvero KM, Martin KA, Hwa J. Cardioprotective prostacyclin signaling in vascular smooth muscle. Prostaglandins Other Lipid Mediat. 2007 Jan; 82(1-4): 109-18.

91. Fisher AJ, Smith CA, Thoden J, Smith R, Sutoh K, Holden HM, Rayment I. Structural studies of myosin: nucleotide complexes: a revised model for the molecular basis of muscle contraction. Biophys J. 1995 Apr; 68(4 Suppl): 19S-26S; discussion 27S-28S

92. Fisslthaler B, Hinsch N, Chataigneau T, Popp R, Kiss L, Busse R, Fleming I. Nifedipine increases cytochrome P4502C expression and endothelium-derived hyperpolarizing factor-mediated responses in coronary arteries. Hypertension. 2000 Aug; 36(2): 270-5.

93. Fleming I, Fisslthaler B, Michaelis UR, Kiss L, Popp R, Busse R The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells. Pflugers Arch. 2001 Jul; 442(4): 511-8.

94. Fleming WW. Membrane potential and vascular smooth muscle sensitivity. A minireview. Blood Vessels. 1987; 24(3): 108-12.

95. Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium. 2007 Oct-Nov; 42(4-5): 467-76.

96. Forbes MS, Rennels ML, Nelson E. Caveolar systems and sarcoplasmic reticulum in coronary smooth muscle cells of the mouse. J Ultrastruct Res. 1979 Jun; 67(3): 325-39

97. Franke AS, Mooers SU, Narayan SR, Siegman MJ, Butler TM. Myosin cross-bridge kinetics and the mechanism of catch.Biophys J. 2007 Jul 15; 93(2): 554-65.

98. Fried G. Small noradrenergic storage vesicles isolated from rat vas deferens--biochemical and morphological characterization. Acta Physiol Scand Suppl. 1980; 493: 1-28.

99. Fukata Y, Mutsuki A and Kalbuchi. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non muscle cells. Trends Physiol Sci 22: 32-39, 2001.

100. Furness JB, Li ZS, Young HM, Forstermann U. Nitric oxide synthase in the enteric nervous system of the guinea-pig: a quantitative description. Cell Tissue Res. 1994 Jul; 277(1): 139-49.

101. Gabella G, Blundell D. Gap junctions of the muscles of the small and large intestine. Cell Tissue Res. 1981; 219(3): 469-88.

102. Gabella G. Structural changes in smooth muscle cells during isotonic contraction. Cell Tissue Res. 1976 Jul 26; 170(2): 187-201.

103. Geiger B, Dutton AH, Tokuyasu KT, Singer SJ. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol. 1981 Dec; 91(3 Pt 1): 614-28.

104. Gershon MD. Serotonin and its implication for the management of irritable bowel syndrome. Rev Gastroenterol Disord. 2003; 3 Suppl 2: S25-34

105. Gerthoffer W. Т.. Murphy R. A. Myosin phosphorylation and regulation of cross-bridge cycle in tracheal smooth muscle. Amer. J. Physiol. 244: C182—C187. 1983.

106. Gerthoffer WT Signal-transduction pathways that regulate visceral smooth muscle function. III. Coupling of muscarinic receptors to signaling kinases and effector proteins in gastrointestinal smooth muscles. Am J Physiol Gastrointest Liver Physiol. 2005 May; 288(5): G849-53.

107. Gibbins IL, Jobling P, Morris JL. Functional organization of peripheral vasomotor pathways. Acta Physiol Scand. 2003 Mar; 177(3): 237-45

108. Gibson A, Brave SR, McFadzean I, Mirzazadeh S, Tucker JF, Wayman C. Nitrergic stimulation does not inhibit carbachol-induced inositol phosphate generation in the rat anococcygeus. Neurosci Lett. 1994 Aug 29; 178(1): 35-8.

109. Gollub J, Cremo CR, Cooke R. Phosphorylation regulates the ADP-induced rotation of the light chain domain of smooth muscle myosin. Biochemistry. 1999 Aug 3; 38(31): 10107-18.

110. Gong MC, Fuglsang A, Alessi D, Kobayashi S, Cohen P, Somlyo AV, Somlyo AP. Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium. J Biol Chem. 1992 Oct 25; 267(30): 21492-8.

111. Gonzalez JM, Jost LJ, Rouse D, Suki WN. Plasma membrane and sarcoplasmic reticulum Ca-ATPase and smooth muscle. Miner Electrolyte Metab. 1996; 22(5-6): 345-8.

112. Graham RM, Perez DM, Hwa J and Piascik MT (1996) 1-Adrenergic receptor subtypes: molecular structure, function and signalling. Circ Res 78: 737-749

113. Gratton JP, Bernatchez P, Sessa WC. Caveolae and caveolins in the cardiovascular system. Circ Res. 2004 Jun 11; 94(11): 1408-17.

114. Greven K. Physiology of the smooth muscles. Current state of research Hippokrates. 1968 Aug 15; 39(15): 557-64.

115. Groneberg DA, Fischer A. Endogenous opioids as mediators of asthma. Pulm Pharmacol Ther. 2001; 14(5): 383-9.

116. Groneberg DA, Rabe KF, Fischer A. Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol. 2006 Mar 8; 533(1-3): 182-94.

117. Groneberg DA, Rabe KF, Wagner U, Fischer A. Vasoactive intestinal polypeptide in the respiratory tract: physiology and pathophysiology Pneumologie. 2004 May; 58(5): 330-8.

118. Guerrero-Hernandez A, Gomez-Viquez L, Guerrero-Serna G, Rueda A. Ryanodine receptors in smooth muscle. Front Biosci. 2002 Jul 1; 7: d1676-88.

119. Gultekin H, Erdem SR, Emre-Aydingoz S, Tuncer M. The role of nitric oxide in the electrical field stimulation-induced contractions of sphincter of oddi and gallbladder strips in Guinea pigs. J Pharmacol Sci. 2006 Jul; 101(3): 240-4.

120. Haeberle JR. Thin-filament linked regulation of smooth muscle myosin. J Muscle Res Cell Motil. 1999 May; 20(4): 363-70.

121. Han S, Speich JE, Eddinger TJ, Berg KM, Miner AS, Call C, Ratz PH. Evidence for absence of latch-bridge formation in muscular saphenous arteries. Am J Physiol Heart Circ Physiol. 2006 Jul; 291(1): H138-46.

122. Harder DR. Heterogeneity of membrane properties in vascular muscle cells from various vascular beds. Fed Proc. 1983 Feb; 42(2): 253-6.

123. Harris ES, Higgs HN. Biochemical analysis of mammalian formin effects on actin dynamics. Methods Enzymol. 2006; 406: 190-214.

124. Hashimoto T, Hirata M, Itoh T, Kanmura Y, Kuriyama H. Inositol 1, 4, 5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol. 1986 Jan; 370: 605-18.

125. Hellstrand P, Nordstrom I. Cross-bridge kinetics during shortening in early and sustained contraction of intestinal smooth muscle. Am J Physiol. 1993 Sep; 265(3 Pt 1): C695-703.

126. Hellstrand P. Cross-bridge kinetics and shortening in smooth muscle. Can J Physiol Pharmacol. 1994 Nov; 72(11): 1334-7.

127. Hernandez M, Barahona MV, Recio P, Benedito S, Martinez AC, Rivera L, Garcia-Sacristan A, Prieto D, Orensanz LM. Neuronal and smooth muscle receptors involved in the PACAP- and VIP-induced relaxations of the pig urinary bladder neck. Br J Pharmacol. 2006 Sep; 149(1): 100-9.

128. Herrera AM, Martinez EC, Seow CY.Electron microscopic study of actin polymerization in airway smooth muscle.Am J Physiol Lung Cell Mol Physiol. 2004 Jun; 286(6): L1161-8. Epub 2004 Jan 29.

129. Hertelendy F, Zakar T. Regulation of myometrial smooth muscle functions. Curr Pharm Des. 2004; 10(20): 2499-517.

130. Hilgers RH, Webb RC. Molecular aspects of arterial smooth muscle contraction: focus on Rho. Exp Biol Med (Maywood). 2005 Dec; 230(11): 829-35.

131. Hirst GD, Silverberg GD, van Helden DF. The action potential and underlying ionic currents in proximal rat middle cerebral arterioles. J Physiol. 1986 Feb; 371: 289-304.

132. Hobbs AJ. Soluble guanylate cyclase: the forgotten sibling. Trends Pharmacol Sci. 1997 Dec; 18(12): 484-91

133. Holman ME, Tonta MA, Parkington HC, Coleman HA. Tetrodotoxin-sensitive action potentials in smooth muscle of mouse vas deferens. J Auton Nerv Syst. 1995 Apr 8; 52(2-3): 237-40.

134. Holmes CL, Landry DW, Granton JT Science review: Vasopressin and the cardiovascular system part 1--receptor physiology. Crit Care. 2003 Dec; 7(6): 427-34

135. Honda K, Tomita T. Electrical activity in isolated human tracheal muscle. Jpn J Physiol. 1987; 37(2): 333-6.

136. Hong Z, Hong F, Olschewski A, Cabrera JA, Varghese A, Nelson DP, Weir EK. Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus. Circulation. 2006 Sep 26; 114(13): 1372-9.

137. Horowitz A, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev. 1996; 76: 967–1003

138. Horowitz B, Ward SM, Sanders KM. Cellular and molecular basis for electrical rhythmicity in gastrointestinal muscles. Annu Rev Physiol. 1999; 61: 19-43

139. Hulme E, Birdsall N., & Buckley N. Muscarinic receptor subtypes. Ann. Rev. Pharmacol. Toxicol. 1990; 30: 633-673.

140. Ikebe M., Koretz J.. Hartshorne D. J. Effects of phosphorylation of light chain residues threonine 18 and serine 19 on the properties and conformation of smooth muscle myosin. J Biol Chem. 263: 6432—6437. 1988.

141. Inagami T. Atrial natriuretic factor as a volume regulator. J Clin Pharmacol. 1994 May; 34(5): 424-6.

142. Ingebritsen T. S., Cohen P. Protein phosphatases: properties and role in cellular regulation Science. 221: 331—338. 1983.

143. Ito M, Hartshorne DJ. Phosphorylation of myosin as a regulatory mechanism in smooth muscle. Prog Clin Biol Res. 1990; 327: 57-72.

144. Itoh T, Ikebe M, Kargacin GJ, Hartshorne DJ, Kemp BE, Fay FS. Effects of modulators of myosin light-chain kinase activity in single smooth muscle cells. Nature. 1989 Mar 9; 338(6211): 164-7.

145. Jacques D, Abdel-Samad D. Neuropeptide Y (NPY) and NPY receptors in the cardiovascular system: implication in the regulation of intracellular calcium. Can J Physiol Pharmacol. 2007 Jan; 85(1): 43-53.

146. Jaggar J.H., Porter V.A., Lederer W.J. and Nelson M.T. Calcium sparks in smooth muscle. Am.J.Physiol.Cell Physiol. 278: 235-256, 2000.

147. Januszewicz A. The natriuretic peptides in hypertension. Curr Opin Cardiol. 1995 Sep; 10(5): 495-500.

148. Jeong JH, Yun MC, Shin CY, Lee TS, Song HJ, Sohn UD. Signaling via histamine receptors in cat duodenal smooth muscle cells. Mol Cells. 2003 Oct 31; 16(2): 180-6.

149. Jiang M. J., Morgan K. G. Agonist-specific myosin phosphorylation and intracellular calcum during isometric contractions of arterial smooth muscle. Pflugers. Arch. 413: 637—643. 1989.

150. Jiang M. J., Morgan K. G. Intracellular calcium levels in phorbol ester-induced contractions of vascular muscle. Amer. J. Physiol. 253: H1365—1371. 1987.

151. Johnson JD, Snyder C, Walsh M, Flynn M. Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N- and C-terminal Ca2+ binding sites of calmodulin. J Biol Chem. 1996 Jan 12; 271(2): 761-7.

152. Jonsson EW. Functional characterisation of receptors for cysteinyl leukotrienes in smooth muscle. Acta Physiol Scand Suppl. 1998 Mar; 641: 1-55.

153. Kamishima T, Burdyga T, Gallagher JA, Quayle JM. Caveolin-1 and caveolin-3 regulate Ca2+ homeostasis of single smooth muscle cells from rat cerebral resistance arteries. Am J Physiol Heart Circ Physiol. 2007 Jul; 293(1): H204-14.

154. Kannan MS, Jager LP, Daniel EE. Electrical properties of smooth muscle cell membrane of opossum esophagus. Am J Physiol. 1985 Mar; 248(3 Pt 1): G342-6.

155. Karagacin G. J., Ikebe M., Fay F. S. Peptide modulators of myosin light chain kinase affect smooth muscle cell contraction. Amer. J. Physiol. 259: C315—C324. 1990.

156. Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev. 1997 Jun; 49(2): 157-230.

157. Kargacin GJ, Cooke PH, Abramson SB, Fay FS. Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells. J Cell Biol. 1989 Apr; 108(4): 1465-75.

158. Kasai M, Kawasaki T, Yamaguchi N. Regulation of the ryanodine receptor calcium release channel: a molecular complex system. Biophys Chem. 1999 Dec 13; 82(2-3): 173-81.

159. Kasparek MS, Fatima J, Iqbal CW, Duenes JA, Sarr MG. Role of VIP and substance P in NANC innervation in the longitudinal smooth muscle of the rat jejunum - influence of extrinsic denervation. J Surg Res. 2007 Jul; 141(1): 22-30.

160. Khakh BS Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci. 2001 Mar; 2(3): 165-74

161. Khan SA, Mathews WR, Meisheri KD. Role of calcium-activated K+ channels in vasodilation induced by nitroglycerine, acetylcholine and nitric oxide. J Pharmacol Exp Ther. 1993 Dec; 267(3): 1327-35.

162. Kim I, Je HD, Gallant C, Zhan Q, Riper DV, Badwey JA, Singer HA, Morgan KG. Ca2+-calmodulin-dependent protein kinase II-dependent activation of contractility in ferret aorta. J Physiol. 2000; 526: 367–374

163. Kiss A, Mikkelsen JD. Oxytocin--anatomy and functional assignments: a minireview. Endocr Regul. 2005 Sep; 39(3): 97-105.

164. Kitamura K, Yamazaki J. Chloride channels and their functional roles in smooth muscle tone in the vasculature. Jpn J Pharmacol. 2001 Apr; 85(4): 351-7.

165. Kito Y, Fukuta H, Suzuki H. Components of pacemaker potentials recorded from the guinea pig stomach antrum. Pflugers Arch. 2002 Nov; 445(2): 202-17.

166. Koh SD, Jun JY, Kim TW, Sanders KM A Ca(2+)-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J Physiol. 2002 May 1; 540(Pt 3): 803-14.

167. Koledova VV, Khalil RA. Ca2+, calmodulin, and cyclins in vascular smooth muscle cell cycle. Circ Res. 2006 May 26; 98(10): 1240-3.

168. Komatsu S.. Hosoya H. Phosphorylation by MAPKAP kinase 2 activates Ma2+-ATPase acti-f myosin II. Biochem. Biophys. Res. Commun. 223: 741—745. 1996.

169. Kortvely E, Gulya K. Calmodulin, and various ways to regulate its activity. Life Sci. 2004; 74: 1065–1070

170. Koshimizu TA, Tanoue A, Hirasawa A, Yamauchi J, Tsujimoto G Recent advances in alpha1-adrenoceptor pharmacology.Pharmacol Ther. 2003 May; 98(2): 235-44.

171. Kotlikoff MI, Kamm KE. Molecular mechanisms of beta-adrenergic relaxation of airway smooth muscle. Annu Rev Physiol. 1996; 58: 115-41.

172. Kroeze WK, Kristiansen K, Roth BL Molecular biology of serotonin receptors structure and function at the molecular level. Curr Top Med Chem. 2002 Jun; 2(6): 507-28

173. Kurahashi K, Nishihashi T, Trandafir CC, Wang AM, Murakami S, Ji X. Diversity of endothelium-derived vasocontracting factors--arachidonic acid metabolites. Acta Pharmacol Sin. 2003 Nov; 24(11): 1065-9.

174. Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, Ito M. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1997 May 9; 272(19): 12257-60.

175. Lagaud G, Davies KP, Venkateswarlu K, Christ GJ. The physiology, pathophysiology and therapeutic potential of gap junctions in smooth muscle. Curr Drug Targets. 2002 Dec; 3(6): 427-40.

176. Lamb FS, Kooy NW, Lewis SJ. Role of Cl(-) channels in alpha-adrenoceptor-mediated vasoconstriction in the anesthetized rat. Eur J Pharmacol. 2000 Aug 11; 401(3): 403-12.

177. Lamounier-Zepter V, Baltas LG, Morano I. Distinct contractile systems for electromechanical and pharmacomechanical coupling in smooth muscle. Adv Exp Med Biol. 2003; 538: 417-25;

178. Lang RJ, Exintaris B, Teele ME, Harvey J, Klemm MF Electrical basis of peristalsis in the mammalian upper urinary tract.Clin Exp Pharmacol Physiol. 1998 May; 25(5): 310-21.

179. Langer SZ, Hicks PE. Alpha-adrenoreceptor subtypes in blood vessels: physiology and pharmacology. J Cardiovasc Pharmacol. 1984; 6 Suppl 4: S547-58.

180. Lauf PK, Adragna NC. K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem. 2000; 10(5-6): 341-54.

181. Le Blanc C, Mironneau C, Barbot C, Henaff M, Bondeva T, Wetzker R, Macrez N. Regulation of vascular L-type Ca2+ channels by phosphatidylinositol 3, 4, 5-trisphosphate. Circ Res. 2004 Aug 6; 95(3): 300-7.

182. Lee TJ. Nitric oxide and the cerebral vascular function. J Biomed Sci. 2000 Jan-Feb; 7(1): 16-26.

183. Lehman, W, Vibert P, Craig R, and Bá rá ny M. Actin and the structure of smooth muscle thin filaments. In: Biochemistry of Smooth Muscle Contraction, edited by Bá rá ny M.. San Diego, CA: Academic, 1996, p. 47-60.

184. Lesh RE, Marks AR, Somlyo AV, Fleischer S, Somlyo AP. Anti-ryanodine receptor antibody binding sites in vascular and endocardial endothelium. Circ Res. 1993 Feb; 72(2): 481-8.

185. Lewis RS. The molecular choreography of a store-operated calcium channel. Nature. 2007 Mar 15; 446(7133): 284-7.

186. Lohn M, Kampf D, Gui-Xuan C, Haller H, Luft FC, Gollasch M. Regulation of arterial tone by smooth muscle myosin type II. Am J Physiol Cell Physiol. 2002 Nov; 283(5): C1383-9.

187. Loirand G, Pacaud P Mechanism of the ATP-induced rise in cytosolic Ca2+ in freshly isolated smooth muscle cells from human saphenous vein. Pflugers Arch. 1995 Jul; 430(3): 429-36

188. Lychkova AE. Mechanisms of synergism of the autonomic nervous system compartments Usp Fiziol Nauk. 2006 Jan-Mar; 37(1): 50-67

189. Mabuchi K, Li B, Ip W, Tao T. Association of calponin with desmin intermediate filaments. J Biol Chem. 1997 Sep 5; 272(36): 22662-6.

190. Machesky LM and Insall RH. Signaling to actin dynamics. J Cell Biol 146: 267-272, 1999

191. Madhani M, Okorie M, Hobbs AJ, MacAllister RJ Reciprocal regulation of human soluble and particulate guanylate cyclases in vivo.Br J Pharmacol. 2006 Nov; 149(6): 797-801

192. Majid DS, Inscho EW, Navar LG. P2 purinoceptor saturation by adenosine triphosphate impairs renal autoregulation in dogs. J Am Soc Nephrol. 1999 Mar; 10(3): 492-8.

193. Marceau F, Sabourin T, Houle S, Fortin JP, Petitclerc E, Molinaro G, Adam A. Kinin receptors: functional aspects.Int Immunopharmacol. 2002 Dec; 2(13-14): 1729-39

194. Marshall I. Characterization and distribution of histamine H1- and H2-receptors in precapillary vessels. J Cardiovasc Pharmacol. 1984; 6 Suppl 4: S587-97.

195. Marston S. В., Redwood С S. The molecular anatomy of caldesmon. Biochem. J 279: I — 16. 1991.

196. Marthan R. Cellular mechanism of muscle contraction of bronchial smooth muscle. Arch Int Physiol Biochim Biophys. 1992 Jul-Aug; 100(4): A27-40.

197. Maslinski C. Histamine receptors Acta Physiol Pol. 1981; 32 Suppl 22: 39-66.

198. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest. 2000 Dec; 106(12): 1521-30.

199. Matsumura F, Yamashiro S. Caldesmon. Curr Opin Cell Biol. 1993 Feb; 5(1): 70-6

200. Matthew A, Shmygol A, Wray S. Ca2+ entry, efflux and release in smooth muscle. Biol Res. 2004; 37(4): 617-24.

201. Mauban JR, Lamont C, Balke CW, Wier WG Adrenergic stimulation of rat resistance arteries affects Ca(2+) sparks, Ca(2+) waves, and Ca(2+) oscillations. Am J Physiol Heart Circ Physiol. 2001 May; 280(5): H2399-405

202. Mawe GM, Talmage EK, Cornbrooks EB, Gokin AP, Zhang L, Jennings LJ. Innervation of the gallbladder: structure, neurochemical coding, and physiological properties of guinea pig gallbladder ganglia. Microsc Res Tech. 1997 Oct 1; 39(1): 1-13.

203. McGuffee LJ, Little SA. Three-dimensional characterization of dense bodies in contracted and relaxed mesenteric artery smooth muscle cells. Scanning Microsc. 1992 Sep; 6(3): 837-45

204. McHale N, Hollywood M, Sergeant G, Thornbury K. Origin of spontaneous rhythmicity in smooth muscle. J Physiol. 2006 Jan 1; 570(Pt 1): 23-8..

205. Mé chiche H, Koroglu A, Elaerts J, Devillier P Vascular effects of neurokinins in humans Therapie. 2001 May-Jun; 56(3): 205-11.

206. Mehta D and Gunst SJ. Actin polymerization stimulated by contractile activation regulates force development in canine tracheal smooth muscle. J Physiol 519: 829-840, 1999.

207. Meiss RA. Mechanics of smooth muscle contraction. In: Cellular Aspects of Smooth Muscle Function, edited by Kao CY and Carsten ME. New York: Cambridge Univ. Press, 1997, p.169-201.

208. Meriney SD, Pilar G. Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development. J Neurosci. 1987 Dec; 7(12): 3827-39.

209. Messenger JP. Immunohistochemical analysis of neurons and their projections in the proximal colon of the guinea-pig. Arch Histol Cytol. 1993 Dec; 56(5): 459-74.

210. Mijailovich SM, Butler JP, Fredberg JJ. Perturbed equilibria of myosin binding in airway smooth muscle: bond-length distributions, mechanics, and ATP metabolism. Biophys J. 2000 Nov; 79(5): 2667-81.

211. Minhas S, Cartledge J, Eardley I. The pathophysiological role of prostaglandins in penile erection. Expert Opin Pharmacother. 2001 May; 2(5): 799-811.

212. Misra S, Murthy KS, Zhou H, Grider JR. Coexpression of Y1, Y2, and Y4 receptors in smooth muscle coupled to distinct signaling pathways. J Pharmacol Exp Ther. 2004 Dec; 311(3): 1154-62.

213. Mitchell BM, Chitaley КС, and Webb RC. Vascular smooth muscle contraction and relaxation. In: Hypertension Primer: The Essentials of High Blood Pressure, edited by Izzo JL and Black HR. Dallas, TX: Am. Heart Assoc, 2003, p. 97-99.

214. Mitsuchashi M, Payan DG. Molecular and cellular analysis of histamine H1 receptors on cultured smooth muscle cells. J Cell Biochem. 1989 Jun; 40(2): 183-92.

215. Miura M, Belvisi MG, Stretton CD, Yacoub MH, Barnes PJ. Role of potassium channels in bronchodilator responses in human airways. Am Rev Respir Dis. 1992 Jul; 146(1): 132-6.

216. Moffatt JD, Cocks TM. Pharmacologically distinct intracellular calcium pools regulate tonic and oscillatory responses in porcine thoracic duct. J Cardiovasc Pharmacol. 2004 Jan; 43(1): 83-92.

217. Morano I. Tuning smooth muscle contraction by molecular motors. J Mol Med. 2003 Aug; 81(8): 481-7.

218. Morgan KG, Gangopadhyay SS. Invited review: cross-bridge regulation by thin filament-associated proteins. J Appl Physiol. 2001 Aug; 91(2): 953-62.

219. Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL, Brown JE, Conley EC, Buell G, Pritchard CA, Evans RJ. Nature. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. 2000 Jan 6; 403(6765): 86-9.

220. Murphy R. A. Special topic: contraction in smooth muscle cells. Annu. Rev. Physiol. 51: 275-283. 1989.

221. Murphy RA, Aksoy MO, Dillon PF, Gerthoffer WT, Kamm KE. The role of myosin light chain phosphorylation in regulation of the cross-bridge cycle. Fed Proc. 1983 Jan; 42(1): 51-6.

222. Murphy RA, Rembold CM. The latch-bridge hypothesis of smooth muscle contraction. Can J Physiol Pharmacol. 2005 Oct; 83(10): 857-64.

223. Murphy RA, Walker JS. Inhibitory mechanisms for cross-bridge cycling: the nitric oxide-cGMP signal transduction pathway in smooth muscle relaxation. Acta Physiol Scand. 1998 Dec; 164(4): 373-80.

224. Nagatomo T, Rashid M, Abul Muntasir H, Komiyama T Functions of 5-HT2A receptor and its antagonists in the cardiovascular system. Pharmacol Ther. 2004 Oct; 104(1): 59-81

225. Nakamura K, Yamamoto T. Morphology of smooth muscle cells in the rat thoracic duct. A scanning and transmission electron-microscope study. Cell Tissue Res. 1988 Feb; 251(2): 243-8.

226. Nakamura K, Yano H, Uchida H, Hashimoto S, Schaefer E, and Sabe H. Tyrosine phosphorylation of paxillin alpha is involved in temporospatial regulation of paxillin-containing focal adhesion formation and F-actin organization in motile cells. J Biol Chem 275: 27155-27164, 2000

227. Nishida Y, Suzuki S, Miyamoto T Pharmacological action of 5'- methylthioadenosine on isolated rabbit aorta strips.Blood Vessels. 1985; 22(5): 229-33

228. Nishiyama A, Inscho EW, Navar LG. Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol. 2001 Mar; 280(3): F406-14.

229. North AJ, Gimona M, Cross RA, Small JV. Calponin is localised in both the contractile apparatus and the cytoskeleton of smooth muscle cells. J Cell Sci. 1994 Mar; 107 (Pt 3): 437-44.

230. North AJ, Gimona M, Lando Z, Small JV. Actin isoform compartments in chicken gizzard smooth muscle cells. J Cell Sci. 1994 Mar; 107 (Pt 3): 445-55.

231. Ogawa Y, Kurebayashi N, Murayama T. Putative roles of type 3 ryanodine receptor isoforms (RyR3). Trends Cardiovasc Med. 2000 Feb; 10(2): 65-70.

232. Ohashi K, Nishimura M, Terasaki AG, Nakagawa H. A 36-kDa protein of the dense bodies of smooth muscle cells. J Biochem (Tokyo). 1994 Dec; 116(6): 1354-9.

233. Ohtani R, Kaneko T, Kline LW, Labedz T, Tang Y, Pang PK. Localization of calcitonin gene-related peptide in the small intestine of various vertebrate species. Cell Tissue Res. 1989 Oct; 258(1): 35-42.

234. Okamoto H, Prestwich SA, Asai S, Unno T, Bolton TB, Komori S. Muscarinic agonist potencies at three different effector systems linked to the M(2) or M(3) receptor in longitudinal smooth muscle of guinea-pig small intestine. Br J Pharmacol. 2002 Apr; 135(7): 1765-75

235. Okamura T, Ayajiki K, Fujioka H, Shinozaki K, Toda N. Neurogenic cerebral vasodilation mediated by nitric oxide. Jpn J Pharmacol. 2002 Jan; 88(1): 32-8.

236. Okatani Y, Watanabe K, Sagara Y. Effect of nitric oxide, prostacyclin, and thromboxane on the vasospastic action of hydrogen peroxide on human umbilical artery. Acta Obstet Gynecol Scand. 1997 Jul; 76(6): 515-20.

237. Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature. 2005 Feb 3; 433(7025): 488-94.

238. Ovsiannikov VI, Berezina TP. The regulation of gastrointestinal motility: the neuromediator and hormonal functions of serotonin Fiziol Zh Im I M Sechenova. 1994 May; 80(5): 1-16

239. Pablo Huidobro-Toro J, Veronica Donoso M. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur J Pharmacol. 2004 Oct 1; 500(1-3): 27-35.

240. Pande J, Grover AK. Plasma membrane calcium pumps in smooth muscle: from fictional molecules to novel inhibitors. Can J Physiol Pharmacol. 2005 Aug-Sep; 83(8-9): 743-54.

241. Parekh AB, Fleig A, Penner R. The store-operated calcium current I(CRAC): nonlinear activation by InsP3 and dissociation from calcium release. Cell. 1997 Jun 13; 89(6): 973-80.

242. Parker CA, Takahashi K, Tang JX, Tao T, Morgan KG.Cytoskeletal targeting of calponin in differentiated, contractile smooth muscle cells of the ferret.J Physiol. 1998 Apr 1; 508 (Pt 1): 187-98.

243. Pato M. D., Tulloch A. C, Walsh M. P., Kerc E. Smooth muscle phosphatases: structure, regulation, and function. Can. J. Physiol. Pharmacol. 72: 1427—1433. 1994.

244. Paul RJ, Krisanda JM, Lynch RM. Vascular smooth muscle energetics. J Cardiovasc Pharmacol. 1984; 6 Suppl 2: S320-7.

245. Paulin D, Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res. 2004 Nov 15; 301(1): 1-7

246. Penna C, Rastaldo R, Mancardi D, Cappello S, Pagliaro P, Westerhof N, Losano G. Effect of endothelins on the cardiovascular system. J Cardiovasc Med (Hagerstown). 2006 Sep; 7(9): 645-52.

247. Persechini A., Hartshorne D. J. Phosphorylation of smooth muscle myosin: evidence for co-operativity between the myosin heads Science. 213 1383—1385. 1981.

248. Pfitzer G, Lubomirov LT, Reimann K, Gagov H, Schubert R. Regulation of the crossbridge cycle in vascular smooth muscle by cAMP signalling. J Muscle Res Cell Motil. 2006; 27(5-7): 445-54.

249. Piascik MT, Perez DM.Alpha1-adrenergic receptors: new insights and directions. J Pharmacol Exp Ther. 2001 Aug; 298(2): 403-10

250. Pinna C, Sanvito P, Puglisi L. Altered neurogenic and mechanical responses to acetylcholine, ATP and substance P in detrusor from rat with outlet obstruction. Life Sci. 2006 Aug 22; 79(13): 1301-6.

251. Popescu LM, Gherghiceanu M, Mandache E, Cretoiu D. Caveolae in smooth muscles: nanocontacts. J Cell Mol Med. 2006 Oct-Dec; 10(4): 960-90.

252. Portincasa P, Di Ciaula A, vanBerge-Henegouwen GP. Smooth muscle function and dysfunction in gallbladder disease. Curr Gastroenterol Rep. 2004 Apr; 6(2): 151-62.

253. Price JM, Cabell JF, Hellermann A. Inhibition of cAMP mediated relaxation in rat coronary vessels by block of Ca++ activated K+ channels. Life Sci. 1996; 58(24): 2225-32.

254. Proskocil BJ, Fryer AD Beta2-agonist and anticholinergic drugs in the treatment of lung disease. Proc Am Thorac Soc. 2005; 2(4): 305-10; discussion 311-2.

255. Racke K, Matthiesen S. The airway cholinergic system: physiology and pharmacology. Pulm Pharmacol Ther. 2004; 17(4): 181-98.

256. Raeymaekers L, Wuytack F The Ca(2+)-transport ATPases of smooth muscle. Verh K Acad Geneeskd Belg. 1991; 53(6): 605-28

257. Ralevic V, Burnstock G Receptors for purines and pyrimidines. Pharmacol Rev. 1998 Sep; 50(3): 413-92

258. Rasmussen CD, Means AR. Calmodulin is involved in regulation of cell proliferation. EMBO J. 1987 Dec 20; 6(13): 3961-8.

259. Rasmussen H., Takuwa Y., Park S. Protein kinase С in the regulation of smooth muscle contraction. FASEB J. 1: 177—185. 1987.

260. Rattan S. The internal anal sphincter: regulation of smooth muscle tone and relaxation. Neurogastroenterol Motil. 2005 Jun; 17 Suppl 1: 50-9.

261. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2; 261(5117): 58-65.

262. Rayment I, Smith C, Yount RG. The active site of myosin. Annu Rev Physiol. 1996; 58: 671-702. Review.

263. Rayment I., Rypniewski W. R., Schmidt-Base K., Smith R., Tomshick D. R., Benning M. M., Winkelmann D. A., Wesenberg G, Holden H. M. Three-dimensional structure of myosin sibfrag-ment-I. A molecular motor. Science. 261: 50—58. 1993.

264. Rembold CM, Murphy RA Models of the mechanism for crossbridge attachment in smooth muscle. J Muscle Res Cell Motil. 1993 Jun; 14(3): 325-34.

265. Rembold CM, Wardle RL, Wingard CJ, Batts TW, Etter EF, Murphy RA. Cooperative attachment of cross bridges predicts regulation of smooth muscle force by myosin phosphorylation. Am J Physiol Cell Physiol. 2004 Sep; 287(3): C594-602.

266. Reutzel R, Yoshioka C, Govindasamy L, Yarmola EG, Agbandje-McKenna M, Bubb MR, McKenna R. Actin crystal dynamics: structural implications for F-actin nucleation, polymerization, and branching mediated by the anti-parallel dimer. J Struct Biol. 2004 Jun; 146(3): 291-301.

267. Ricciotti, HA, Alvarez J, Morgan KG, Wang CLA, Sacchetti P, Meservey M, and Ludmir J. Labor is associated with decreased levels of caldesmon in human myometrium. J Soc Gynecol Investig 3: 337A, 1996.

268. Ridley A. Rho: theme and variations. A review. Curr Biol 6: 1256-1264, 1996.

269. Robertson, B. E., R. Schubert, J. Hescheler, and M. T. Nelson. cGMP-dependent protein kinase activates Ca 21 –activated K channels in cerebral artery smooth muscle cells. Am. J. Physiol. Cell Physiol. 265: C299–C303, 1993.

270. Romero F, Silva BA, Nouailhetas VL, Aboulafia J. Activation of Ca(2+)-activated K+ (maxi-K+) channel by angiotensin II in myocytes of the guinea pig ileum. Am J Physiol. 1998 Apr; 274(4 Pt 1): C983-91.

271. Roux E, Guibert C, Savineau JP, Marthan R. [Ca2+]i oscillations induced by muscarinic stimulation in airway smooth muscle cells: receptor subtypes and correlation with the mechanical activity. Br J Pharmacol. 1997 Apr; 120(7): 1294-301.

272. Rozec B, Noireaud J, Trochu JN, Gauthier C. Place of beta 3-adrenoceptors among other beta-adrenoceptor subtypes in the regulation of the cardiovascular system. Arch Mal Coeur Vaiss. 2003 Sep; 96(9): 905-13.

273. Rumessen JJ, Peters S, Thuneberg L. Light- and electron microscopical studies of interstitial cells of Cajal and muscle cells at the submucosal border of human colon. Lab Invest. 1993 Apr; 68(4): 481-95.

274. Rumessen JJ, Thuneberg L. Pacemaker cells in the gastrointestinal tract: interstitial cells of Cajal. Scand J Gastroenterol Suppl. 1996; 216: 82-94.

275. Rummery NM, Hill CE. Vascular gap junctions and implications for hypertension. Clin Exp Pharmacol Physiol. 2004 Oct; 31(10): 659-67.

276. Russell JM. Sodium-potassium-chloride cotransport. Physiol Rev. 2000 Jan; 80(1): 211-76.

277. Sah VP, Seasholtz TM, Sagi SA, and Brown JH. The role of rho in g protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol 40: 459-489, 2000.

278. Sanders KM, Ordog T, Koh SD, Ward SM A Novel Pacemaker Mechanism Drives Gastrointestinal Rhythmicity. News Physiol Sci. 2000 Dec; 15: 291-298.

279. Sanders KM. Ionic mechanisms of electrical rhythmicity in gastrointestinal smooth muscles. Annu Rev Physiol. 1992; 54: 439-53.

280. Sann H, Hammer K, Hildesheim IF, Pierau FK. Neurons in the chicken ureter are innervated by substance P- and calcitonin gene-related peptide-containing nerve fibres: immunohistochemical and electrophysiological evidence. J Comp Neurol. 1997 Mar 31; 380(1): 105-18.

281. Santana LF, Cheng H, Gomez AM, Cannell MB, Lederer WJ. Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. Circ Res. 1996 Jan; 78(1): 166-71.

282. Sathishkumar K, Ross GR, Prakash VR, Mishra SK. Relative contribution of intracellular and extracellular Ca2+ to alpha2-adrenoceptor-mediated contractions of ovine pulmonary artery. Pharmacol Res. 2006 Sep; 54(3): 219-25.

283. Savineau J. P., Manhan R. Modulation of the calcium sensitivity of the smooth muscle contractile apparatus: molecular mechanisms, pharmacological and pathophysiological implications. Fundam. Clin. Pharmacol. 11: 289—299. 1997

284. Schaus TE, Taylor EW, Borisy GG. Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model. Proc Natl Acad Sci U S A. 2007 Apr 24; 104(17): 7086-91.

285. Schroeter M, Chalovich JM. Ca2+-ca






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.