Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Матрица линейного оператора.






    Рассмотрим линейный оператор A: C®C (линейное преобразование пространства C). Пусть векторы образуют базис пространства C. Подействуем оператором А на базисные векторы. В результате получим векторы . Так как вектор , то его можно разложить по базису:

    .

    В результате получаем матрицу:

    ,

    i- ый столбец которой есть вектор-столбец из координат вектора в базисе . Матрица называется матрицей линейного оператора в заданном базисе .

    Пусть теперь - произвольный вектор из C, а - его образ при линейном преобразовании А. Тогда координаты векторов и связаны соотношением:

    .

    Таким образом, действие линейного оператора на вектор сводится к преобразованию его координат с помощью матрицы линейного оператора. Задание матрицы линейного оператора является наиболее удобным способом определения оператора действующего в конечномерном пространстве.

    Пусть С- матрица перехода от базиса к базису , а и - матрицы оператора в первом и втором базисе соответственно. Тогда имеют место соотношения:

    .

    Матрицы и , связанные между собой данными соотношениями, называются подобными матрицами.

    Действиям над линейными операторами соответствуют точно такие же действия над их матрицами. Если А и В линейные операторы, действующие в Х и , - матрицы этих операторов в одном и том же базисе, то:

    1. Оператору А+В соответствует матрица .

    2. Оператору соответствует матрица .

    3. Оператору АВ соответствует матрица .

    4.Если оператор В=А-1 , то матрица .

    Пример 1. Вычислим матрицу тождественного оператора Е. По определению . Пусть базис в Х. Тогда вектор . Поэтому тождественному оператору соответствует единичная матрица:

    .

    Пример 2. Покажем, что поворот плоскости на угол a вокруг начала координат является линейным преобразованием, и найдем матрицу этого преобразования в любом ортонормированном базисе. Предполагается, что положительное направление отсчета углов совпадает с направлением кратчайшего поворота, переводящего базисный вектор во второй вектор базиса . Покажем, во-первых, что данный оператор является линейным. Пусть - радиус-вектор произвольной точки плоскости. Обозначим его координаты , модуль через r, угол с базисным вектором через j. Тогда

    .

    Образ вектора вектор будет равен

    Рассмотрим теперь сумму двух векторов

    .

    Тогда образ суммы

    т. е. выполняется свойство аддитивности линейного оператора. Аналогично можно проверить выполнение свойства однородности . Найдем теперь матрицу оператора в базисе , . Так как базис ортонормированный, то и . Тогда образы базисных векторов равны и . Откуда матрица оператора имеет вид

    .

    Пример 3. Линейный оператор А в базисе , , ,

     

     

    имеет матрицу

    .

    Необходимо найти матрицу этого оператора в базисе , , , .

    Векторы двух базисов «старого» и «нового» связаны соотношениями . Поэтому матрица перехода С от базиса к базису имеет вид:

    .

    Тогда матрица оператора А в «новом» базисе

    .

     

    Задачи

    1. Пусть А и В- линейные операторы, действующие из Х в U. Показать, что оператор С=А+В является линейным.

     

    2. Показать, что сложение операторов обладает следующими свойствами:

    А+В=В+А,

    (А+В)+С=А+(В+С).

    3. Пусть А и В- линейные операторы. Показать, что оператор С=АВ является линейным.

    4. Выяснить, какие из следующих операторов А, определенных путем задания координат вектора как функций координат вектора , являются линейными, и найти их матрицы в том же базисе, в котором заданы координаты вектора :

    а) b) с)

    5. Доказать, что существует единственное линейное преобразование трехмерного пространства, переводящее векторы соответственно в и найти матрицу этого преобразования в том же базисе, в котором заданы координаты всех векторов:

    6. Линейное преобразование j в базисе , , имеет матрицу

    Найти его матрицу в базисе , , .

    7. Пусть оператор А в базисе имеет матрицу , оператор В в базисе имеет матрицу . Найти матрицу оператора А+В в базисе .

    8. Доказать, что любое линейное преобразование А одномерного пространства сводится к умножению всех векторов на одно и то же число, т.е. .

    9. Как изменится матрица линейного оператора, если в базисе поменять местами векторы и ?

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.