Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.Для новых пользователей первый месяц бесплатно. Чат-бот для мастеров и специалистов, который упрощает ведение записей: — Сам записывает клиентов и напоминает им о визите; — Персонализирует скидки, чаевые, кешбек и предоплаты; — Увеличивает доходимость и помогает больше зарабатывать; Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.Нормальный вид квадратичной формы
Согласно теореме Лагранжа любую квадратичную форму можно привести к каноническому виду. То есть существует диагонализирующий (канонический) базис, в котором матрица этой квадратичной формы имеет диагональный вид , где . Тогда в этом базисе квадратичная форма имеет вид . (6.17) Пусть среди ненулевых элементов имеется положительных и отрицательных, причем . Меняя, в случае необходимости нумерацию базисных векторов, можно всегда добиться того, чтобы в диагональной матрице квадратичной формы первые элементов были положительными, остальные – отрицательными (если , то последние элементов в матрице – нули). В результате квадратичную форму (6.17) можно записать в следующем виде (6.18) В результате замены переменных на переменные согласно системе: квадратичная форма (6.18) примет диагональный вид, в которой коэффициенты при квадратах переменных единицы, минус единицы или нули: , (6.19) где матрица квадратичной формы (6.19) имеет диагональный вид . (6.20) Определение 6.9. Запись (6.19) называется нормальным видом квадратичной формы, а диагонализирующий базис, в котором квадратичная форма имеет матрицу (6.20), называется нормализирующим базисом. Таким образом, в нормальном виде (6.19) квадратичной формы диагональными элементами матрицы (6.20) могут быть единицы, минус единицы или нули, причем располагаются они так, что сначала первыми идут единиц, затем минус единиц, потом нулей (не исключаются случаи обращения в нуль указанных значений , , ). Таким образом, доказана следующая теорема. Теорема 6.3. Всякая квадратичная форма может быть приведена к нормальному виду (6.19) с диагональной матрицей (6.20).
|