Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Пояснение. Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится ⇐ ПредыдущаяСтр 5 из 5
Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится, а также не имеет во временно́ й характеристике точек разрыва. Именно это подразумевает понятие «спектр, ограниченный частотой». Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, так как они конечны по времени и обычно имеют разрывы во временно́ й характеристике. Соответственно, их спектр бесконечен. В таком случае полное восстановление сигнала невозможно и из теоремы Котельникова вытекают два следствия: ·Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой, где — максимальная частота, которой ограничен спектр реального сигнала. ·Если максимальная частота в сигнале превышает половину частоты дискретизации, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует. Говоря шире, теорема Котельникова утверждает, что непрерывный сигнал можно представить в виде интерполяционного ряда
где — функция sinc. Интервал дискретизации удовлетворяет ограничениям Мгновенные значения данного ряда есть дискретные отсчёты сигнала. Развитие теоремы Впоследствии было предложено большое число различных способов аппроксимации сигналов с ограниченным спектром, обобщающих теорему отсчётов.[7][8] Так, вместо кардинального ряда по функциям sinc, являющимся характеристическими функциями прямоугольных импульсов, можно использовать ряды по конечно- или бесконечнократнымсвёрткам функций sinc. Например, справедливо следующее обобщение ряда Котельникова непрерывной функции с финитным спектром на основепреобразований Фурье атомарных функций[9]:
где параметры удовлетворяют неравенству, а интервал дискретизации
https://ru.wikipedia.org/wiki/%D2%E5%EE%F0%E5%EC%E0_%CA%EE%F2%E5%EB%FC%ED%E8%EA%EE%E2%E0
12. Определение линейной системы Теория линейных стационарных систем — раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Широко используется в процессе управления техническими системами, цифровой обработке сигналов и других областях инженерного дела. Обзор Определяющими свойствами для любой линейной стационарной системы являются линейность и стационарность: · Линейность означает, что связь между входом и выходом системы удовлетворяет свойству. Формально, линейной называется система, обладающая следующим свойством: если сигнал на входе системы (воздействие) — x (t) = A · x 1(t) + B · x 2(t) тогда сигнал на выходе системы (реакция) — y (t) = A · y 1(t) + B · y 2(t) для любых постоянных A и B, где yi(t) — выход системы как реакция на входной сигнал (воздействие) x i(t). · Стационарность — означает, что выходной сигнал системы как реакция на любой заданный входной сигнал одинаков для любого момента приложения входного сигнала (с точностью до времени запаздывания момента приложения входного сигнала). В более узком смысле — при запаздывании входного сигнала по времени на некоторую величину, выходной сигнал будет запаздывать на ту же самую величину. Динамика систем, обладающих вышеперечисленными свойствами, может описываться одной простой функцией, к примеру, импульсной переходной функцией. Выход системы может рассчитываться как свёртка входного сигнала с импульсной переходной функцией системы. Этот метод анализа иногда называется анализом во временной области. Сказанное справедливо и для дискретных систем.
Связь между временно́ й и частотной областями Кроме того, любая ЛСС может быть описана в частотной области с помощью своей передаточной функции, которая является преобразование Лапласа импульсной передаточной функции (или Z-преобразованием в случае дискретных систем). В силу свойств этих преобразований, выход системы в частотной области будет равен произведению передаточной функции и соответствующего преобразования входного сигнала. Другими словами, свёртке во временной области соответствует умножение в частотной области. Для всех ЛСС собственные функции являются комплексными экспонентами. То есть, если вход системы представляет собой комплексный сигнал с некоторой комплексной амплитудой и частотой, то выход будет равен некоторому сигналу с комплексной амплитудой. Отношение будет являться передаточной функцией системы на частоте. Так как синусоиды представляют собой сумму комплексных экспонент с комплексно-сопряжёнными частотами, если вход системы — синусоида, то выходом системы будет также синусоида, в общем случае с другой амплитудой и фазой, но с той же частотой. Теория ЛСС хорошо подходит для описания многих систем. Большинство ЛСС гораздо проще анализировать, чем нестационарные и нелинейные системы. Любая система, динамика которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является линейной стационарной системой. Примерами таких систем являются электрические схемы, собранные из резисторов, конденсаторов и катушек индуктивности (RLC-цепочки). Груз на пружинке также можно считать ЛСС. Большая часть общих концепций ЛСС схожа как в случае непрерывных систем, так и в случае дискретных систем. https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BB%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D1%8B%D1%85_%D1%81%D1%82%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D1%80%D0%BD%D1%8B%D1%85_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC 13. δ — функции; ее спектр
14. Аналитическое выражение линейного преобразования через импульсную и спектральную характеристики
|